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    Chapter 16   

 Single-Cell RNA Sequencing of Human T Cells                     

     Alexandra-Chloé     Villani      and     Karthik     Shekhar      

  Abstract 

   Understanding how populations of human T cells leverage cellular heterogeneity, plasticity, and diversity 
to achieve a wide range of functional fl exibility, particularly during dynamic processes such as development, 
differentiation, and antigenic response, is a core challenge that is well suited for single-cell analysis. 
Hypothesis-free evaluation of cellular states and subpopulations by transcriptional profi ling of single T cells 
can identify relationships that may be obscured by targeted approaches such as FACS sorting on cell- 
surface antigens, or bulk expression analysis. While this approach is relevant to all cell types, it is of particu-
lar interest in the study of T cells for which classical phenotypic criteria are now viewed as insuffi cient for 
distinguishing different T cell subtypes and transitional states, and defi ning the changes associated with 
dysfunctional T cell states in autoimmunity and tumor-related exhaustion. This unit describes a protocol 
to generate single-cell transcriptomic libraries of human blood CD4 +  and CD8 +  T cells, and also introduces 
the basic bioinformatic steps to process the resulting sequence data for further computational analysis. We 
show how cellular subpopulations can be identifi ed from transcriptional data, and derive characteristic 
gene expression signatures that distinguish these states. We believe single-cell RNA-seq is a powerful tech-
nique to study the cellular heterogeneity in complex tissues, a paradigm that will be of great value for the 
immune system.  

  Key words     Single-cell RNA sequencing  ,   T cells  ,   CD4  ,   CD8  ,   Smart-Seq2  ,   Alignment  ,   Clustering  , 
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1      Introduction 

 T cells initiate and orchestrate adaptive immune  responses   against 
pathogenic infections and cancers, and have crucial roles in  allergy  , 
 autoimmunity  , and transplant rejection.  Naïve T cells   are activated 
upon recognizing antigenic peptide- MHC   molecules on  antigen- 
presenting cells   during infection. This recognition is followed by 
transcriptional,  epigenetic  , and metabolic changes inside the T 
cells, making the cells proliferate and release signaling molecules 
that regulate a new  immune response   [ 1 – 4 ]. Discoveries of new 
states of T cell differentiation have also showed that these states are 
highly plastic, and rather than being “disconnected islands,” are 
more like neighboring territories spread out on a continuous 
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landscape whose borders are not clearly defi ned. A population of T 
cells associated with a particular differentiated state can acquire dif-
ferent properties and functions classically associated with another 
state during a secondary immune response, demonstrating their 
plasticity [ 5 – 9 ]. Appearance of cellular fl exibility may arise from 
truly fl exible genetic programs within individual cells or, alterna-
tively, from heterogeneous composition of states within a popula-
tion. Intrinsic plasticity of genetic programs and  heterogeneity   in 
composition can confound each other in data, making it a chal-
lenge to identify clinically relevant measurements that accurately 
refl ect the state and capability of the human immune system. Thus, 
single-cell experimental and analytical approaches are needed to 
appropriately decipher and dissect the heterogeneity of T cell pop-
ulations in order to gain further understanding of their capabilities 
in driving  immune responses  . 

   While well-established techniques like polychromatic and imaging 
 fl ow   cytometry, mass cytometry, single-cell quantitative PCR 
(qPCR), RNA FISH (fl uorescence in situ hybridization) can pro-
vide information at single-cell resolution [ 10 ,  11 ], such approaches 
can only monitor a small number of preselected candidate features 
at once, thus restricting the ability to examine genome-wide co- 
expression patterns and to interrogate cellular  heterogeneity   from 
an unbiased point of view. Furthermore, while transcriptional pro-
fi ling of populations by  microarrays   and RNA-sequencing have 
proved valuable in T cell biology, it is also well-known that the 
average expression level of a population of cells can often be a poor 
representation of the states of individual cells within the popula-
tion, a phenomenon known as “Simpson’s paradox” [ 12 ,  13 ]. 
Indeed, measurements using single-molecule RNA FISH indicated 
that levels of specifi c transcripts could vary by several folds between 
presumably equivalent cells, further illustrating the value of profi l-
ing whole transcriptomes at the single-cell level [ 12 ]. 

 Analyses of transcriptomes through massively parallel sequenc-
ing of cDNAs, derived from cellular RNA by  reverse transcription   
(RNA-Seq), generate millions of short fragments that can be 
 sequenced   to accurately quantify expression levels, assemble new 
transcripts and investigate alternative RNA processing [ 14 ]. 
Development of RNA-seq inspired a fl urry of experimental methods 
that consistently lowered the required starting amounts of RNA, 
ideally down to single-cell quantities. One of the fi rst groups to 
demonstrate single-cell RNA-sequencing [ 15 ,  16 ] adapted a proto-
col initially developed for single-cell  microarray   studies [ 17 ], which 
enabled preferential amplifi cation of 3′ ends of mRNAs, and detec-
tion of thousands of genes expressed in single mouse oocytes and 
early embryonic cells [ 15 ,  16 ]. Since this fi rst study, several single-
cell RNA- sequencing   (scRNA-seq) protocols have been reported 
(such as  Smart-Seq  ,  Smart-Seq2  , CEL-Seq, STRT, MARS-Seq, 
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Drop-Seq, inDrop), enabling unbiased profi ling of cellular mRNA 
expression [ 18 – 27 ] and increasing information content recovered 
per cell. Notably, except for the Smart-Seq and  Smart-Seq2   proto-
cols, all existing scRNA-seq methods preferentially capture reads 
originating from either the 3′ or 5′ end of transcripts, thus limiting 
sequencing coverage only to the ends of the molecule. One advan-
tage of methods that capture the 3′ or 5′ end of the transcripts is the 
ability to tag each molecule during  reverse transcription   with a DNA 
barcode that serves as a unique molecular identifi er (UMI) that can 
be used to digitally count transcript numbers without PCR amplifi -
cation artifacts [ 23 ]. Table  1  highlights key features of different 
scRNA-seq methods that have been widely used. Recent advances 
based on droplet  microfl uidics   have substantially increased the cel-
lular throughput of scRNA-seq, making it possible to profi le tens of 
thousands of cells in a single reaction [ 20 ,  21 ].

      Table 1  
  Overview of characteristics of different single cell RNA-sequencing protocols   

 Poly (A) 
tailing 

 Template 
switching 

 In vitro 
transcription 

 Rolling circle 
amplifi cation  5′ Selection  3′ Selection 

 Associated 
acronyms 

 N/A  Smart-seq, 
Smart- 
seq2 

 N/A  N/A  STRT  CEL-seq, 
MARS-seq, 
drop-seq, 
in-drop, 
SCRB-Seq 

 Full-length 
transcripts 

 Yes  Yes  Yes  Yes  No  No 

 Strand- specifi city  No  No  No  No  Yes  Yes 

 Early pooling a   No  No  No  No  Possible  Possible 

 Positional bias  Weakly 3′  Weakly 3′  Weakly 3′  NO  5′ Only  3′ Only 

 Unique molecular 
identifi ers 
(UMIs) b  

 No  No  No  No  Yes  Yes 

 Available 
commercial kits 

 No  Yes c   No  No  No  No 

 Key references  [ 15 ,  16 ]  [ 24 – 26 ]  [ 61 ,  62 ]  [ 63 – 64 ]  [ 23 ,  65 ]  [ 18 – 22 ] 

   a Refers to the possibility to introduce a cellular barcode identifi er during fi rst-strand synthesis 
  b UMIs are random  sequences   of bases used to tag each RNA molecules prior to PCR amplifi cation [ 23 ], thereby aiding 
in the identifi cation of PCR duplicates. While losses in cDNA synthesis and bias in cDNA amplifi cation can result into 
severe quantitative errors when performing scRNAseq, UMIs can help in eliminating such amplifi cation noise by 
enabling counting of individual molecules 
  c Clontech offers multiple generations of single-cell transcriptome SMARTer analysis kits allowing performing  Smart- 
Seq   and  Smart-Seq2   protocols. Furthermore, some of these SMARTer kits are compatible with the with C1 Auto Prep 
integrated fl uidic circuits (IFCs) from Fluidigm, which enables in an integrated workfl ow the capture of single cells 
follow by RT and whole transcriptome amplifi cation  
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   While still an order of magnitude lower in cellular  throughput 
  compared to single-cell protein measurement techniques like fl ow 
and mass cytometry, scRNA-seq’s ability to profi le transcriptome- 
wide information in a completely unbiased manner has already 
enabled many novel biological discoveries. In particular, scRNA- 
seq approaches have revealed previously uncharacterized  subsets   of 
cells together with endogenous marker genes specifi c to these sub-
sets, and shown that cell-specifi c splicing and allele expression pat-
terns can differ signifi cantly from their apparent population 
averages [ 11 ,  12 ]. Although the functional consequences of these 
phenomena remain to be elucidated, it must be noted that they 
could not have been detected in an unbiased fashion with previous 
single-cell methodologies like fl ow cytometry and qPCR.  

   Here we describe introductory scRNA-sequencing and data analy-
sis for single human T cells, whose libraries were prepared using 
the  Smart-Seq2   (SS2) protocol ([ 25 – 27 ]; Fig.  1 ). SS2 is an 
improvement over the original  Smart-Seq   single-cell method [ 24 ], 
which was shown to generate quantitative and reproducible data 
from both single cells and small amounts of total RNA of 10 pg or 
more. With SS2, Picelli et al. further optimized the  reverse tran-
scription   (RT), template switching, and pre-amplifi cation steps of 
Smart-Seq to obtain an increased cDNA yield from single cells, as 
well as higher sensitivity, fewer technical biases and less variability 
[ 25 ,  26 ]. Importantly, their published protocol relies entirely on 
off-the-shelf  reagents  , making it more cost-effective than commer-
cially available alternative kits.

   Briefl y, SS2 begins with  reverse transcription   of polyadenylated 
transcripts using an oligo-dT primer and a reverse transcriptase 
derived from the Moloney murine leukemia virus (MMLVRT) 
(Fig.  1 ). The reverse  transcription   is followed by a template switch-
ing reaction that relies on the terminal-transferase activity of the 
MMLVRT, wherein 2–5 untemplated nucleotides are added to the 
3′ end of the nascent cDNA by the MMLVRT upon reaching the 
5′ end of the mRNA [ 25 ,  26 ]. By the introduction of a template 
switch oligonucleotide primer (TSO), the MMLVRT is made to 
switch its template, and synthesize a complementary  sequence   to 
the TSO. As a result, every cDNA molecule derived from a full- 
length mRNA carries additional artifi cial  sequences   at the 5′ and 
the 3′ ends, which are identical to each other. This trick makes it 
possible to carry out PCR amplifi cation of the cDNA using a single 
primer. The resulting  cDNA   is amplifi ed to get enough material for 
subsequent experimental steps. This amplifi cation is followed by an 
incubation step with Tn5 transposase to fragment the full-length 
double stranded cDNA and append adapters on each molecule, 
using the dual-index strategy developed by Illumina, Inc. Each 
single-cell  library   is then individually barcoded by PCR with index 

1.2   Smart-Seq2   
Methodology
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primers. The barcoded single cells are then pooled and  sequenced   
on an Illumina  sequencer  . An important difference with other 
methods is that every single cell is treated independently until the 
very end of the protocol (including library generation). While 
resulting in a more expensive protocol as compared to alternatives 
that  multiplex   before cDNA amplifi cation (Table  1 ), SS2 has the 
advantage in that if interesting patterns are observed in specifi c 
single cells upon sequencing analysis, it remains possible to go back 
to the cDNA of those cells and generate more in-depth sequencing 
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  Fig. 1    Flowchart for  Smart-Seq2   single cell  library   preparation. The diagram, 
modifi ed from Picelli et al. [ 26 ], illustrates the key experimental steps in single- 
cell RNA-sequencing. The library preparation is performed using the Nextera XT 
DNA library preparation and index kits from Illumina. Figure  1  is adapted by per-
mission from Macmillan Publishers Ltd: [NATURE PROTOCOLS] (Picelli et al. Nat 
Protoc 9(1): 171–181), copyright (2014)       
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data or performing further qPCR analysis selectively. Notably, 
 Smart-Seq   and  Smart-Seq2   are the only protocols that can gener-
ate full-length transcript data, which provide a number of advan-
tages compared to 5′ or 3′ tagged data (Table  1 ). Specifi cally in the 
context of lymphocytes, full-length information can enable the 
simultaneous inference of TCR/BCR clonality and gene expres-
sion state [ 28 ]. Nevertheless, current limitations of Smart- 
Seq/ Smart-Seq2   include the lack of strand specifi city, UMI (unique 
molecular identifi ers) to quantify transcript numbers, and the 
inability to detect non-polyadenylated RNA (Table  1 ). 

  Computational   analysis of scRNA-seq data can identify groups 
of cells with similar expression, and characterize the key expression 
signatures that show variation in the data. Such information, when 
combined with other kinds of data (e.g., chromatin state, protein 
expression) can be used to derive insights into the regulatory rules 
that are responsible for the maintenance and  plasticity   of cell states. 
Specifi c goals of scRNA-seq analysis may include: (1) identifying 
discrete subpopulations of cells, and gene signatures that are 
unique to each subpopulation; (2) Identifying co-expressed gene 
modules and regulatory programs, and their expression levels in 
different subpopulations; (3) characterizing biological  heterogene-
ity   within specifi c discrete subpopulations, and identifying the gene 
modules whose variation underlie these continuous states. Notably, 
while there are several scRNA-sequencing protocols available [ 18 –
 27 ], the  computational   workfl ow described below was tailored to 
analyze data generated from the  Smart-Seq2   method. 

 The rest of this unit is organized as follows. We begin with a 
brief methodological overview of how single RNA-sequencing 
libraries can be prepared and  sequenced   using a slightly modifi ed 
version of the previously published  Smart-Seq2   protocol [ 25 – 27 ]. 
To illustrate the methods described in this unit, we generated 
single- cell libraries from 384T cells (192 CD4 +  and 192 CD8 +  T 
cells) FACS sorted from healthy human peripheral blood. Next, we 
outline the steps involved in preliminary  bioinformatic    analysis   of 
single T cell RNA-sequencing data generated using the described 
protocol, focusing on alignment, quantifi cation, quality control 
(QC), principal components analysis of expression data to deter-
mine subpopulations, differential expression analysis to determine 
signatures, and visualization of results. By listing these steps, which 
are implemented either in the Unix command line environment 
(i.e., alignment and expression quantifi cation), or the R program-
ming language (i.e., analysis of expression), we hope to introduce 
the reader to typical  computational   approaches that are widely 
used, and that can be applied to other datasets. We also introduce 
the reader to some of the commonly used software packages that 
are used for RNA-seq analysis, and also refer to excellent reviews 
that describe computational steps in more detail.   
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2    Materials 

   The material and equipment listed below are for generating single- 
cell lysate and performing the  reverse transcription   steps, as these 
are the steps that were slightly modifi ed from the originally pub-
lished method and protocols [ 25 – 27 ] to generate the T cell data 
using SS2. For the remaining reagents needed to run SS2 (includ-
ing PCR amplifi cation, quality control assessments, sequencing 
 library   generation), as well as detailed description of the SS2 pro-
tocol, please refer to Picelli et al. [ 26 ], or to Trombetta et al. [ 27 ] 
who describe a slightly modifi ed version of the original protocol. 

       1.    Fluorescence activated  cell sorting   (FACS) machine.   
   2.    Plate centrifuge.   
   3.    Vortex.   
   4.    Lysis buffer: 1 % (vol/vol) 2-Mercaptoethanol in TCL buffer 

(Qiagen).   
   5.     Cell sorting   setup beads for green-yellow lasers (ThermoFisher 

Scientifi c).   
   6.    96-well PCR plates, skirted (Eppendorf).   
   7.    MicroAmp clear adhesive fi lm (ThermoFisher Scientifi c).   
   8.     Peripheral blood   mononuclear  cells   or T cell suspension.   
   9.    1× Phosphate Buffered Saline (PBS).   
   10.    Human AB Serum (Corning).   
   11.    Fluorescently conjugated antibodies to human  antigens  , such 

as TCRαβ, CD3 CD4, CD8, CD62L, CD45RA, and CD45RO.   
   12.    Dry ice.      

       1.    DynaMag-96 side-skirted magnet (ThermoFisher Scientifi c).   
   2.    8-channel and 12-channel pipettes (P20 and P200).   
   3.    Thermal cycler.   
   4.    RNAse decontamination solution (RNaseZap, ThermoFisher 

Scientifi c).   
   5.    Ethanol.   
   6.    RNase-free water.   
   7.    RNA-SPRI beads (Agencourt RNAClean XP RNA-SPRI 

beads, Beckman Coulter).   
   8.    Recombinant Ribonuclease Inhibitor (Clontech).   
   9.    10 μM  reverse transcription   DNA oligonucleotide primer 

(custom synthesized by Integrated DNA Technologies): 
AAGCAGTGGTATCAACGCAGAGTACT(30)VN.   

2.1  Generation 
of scRNA-Seq 
Libraries 
with  Smart-Seq2  

2.1.1  Lysis Buffer 
and Single- Cell Sorting     

2.1.2  RNA Lysate 
Cleanup and First Step 
of  Reverse Transcription   
Reaction
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   10.    dNTP mix (dATP, dCTP, dGTP, and dTTP, each at 10 mM) 
(ThermoFisher Scientifi c).   

   11.    SuperScript II Reverse Transcriptase Kit (ThermoFisher 
Scientifi c): 5× fi rst-strand buffer, 100 mM DTT, SuperScript 
II reverse transcriptase.   

   12.    PCR 12-well tube strips and caps.   
   13.    50 ml conical bottom tube.   
   14.    1.5 ml RNAse- and DNAse-free microcentrifuge tubes.   
   15.    Low retention tips (Rainin).        

3    Experimental Procedure 

    Peripheral blood   mononuclear  cells      (PBMCs)    were isolated from 
the blood of healthy controls individual by  fi coll   gradient centrifuga-
tion, followed by  antibody   staining, as described in Chap.   4     of this 
volume (“FACS analysis of memory T lymphocytes”, by Enrico 
Lugli and colleagues). Briefl y, we used antibodies against well-estab-
lished surface antigens to enrich for four phenotypic  subsets   in each 
of CD4 +  and CD8 +  T cell populations—naïve cells (CD62L +  
CD45RA + ), central memory (CD62L +  CD45RA − ), effector mem-
ory (CD62L − CD45RA − ), and short- lived effector cells (CD62L −  
CD45RA + ), each at roughly 25 % proportion. While these subsets 
are present in different abundances in circulation, our goal was to 
have an even representation of the four main subsets per 96-well 
plate. We thus opted for creating a quadrant gate of CD62L versus 
CD45RA (Fig.  2a ) and sorted 23 cells per gated quadrant per 
96-well plate (1 cell per well); one well was left empty per subset as 
technical control (Fig.  2b ). We used this  gating strategy   for both 
CD4 (Lin −   TCR  αβ +  CD3 +  CD4 +  CD8 - ) and CD8 (Lin −  TCRαβ +  
CD3 +  CD4 −  CD8 + ) T cells, enabling over- sampling of rare and 
down-sampling of abundant cell subtypes. Figure  2b  illustrates an 
example of plate layout. Stained cells were resuspended in 1× PBS 
with 2 % AB human serum and kept on ice until sorted.

          1.    Clean the working space and pipettes with 70 % EtOH and 
RNaseZap solutions before setting up the working plates.   

   2.    Distribute 10 μl of lysis buffer into each well of a full-skirted- 
side 96-well PCR plate. Cover the plate with MicroAmp clear 
adhesive fi lm and keep at room temperature until ready for 
single- cell isolation. Centrifuge 1 min at 300 ×  g  at room tem-
perature just before sorting to ensure the lysis buffer is at the 
bottom of each well of the 96-well plate.   

   3.    In preparation to performing single-cell  sorting  , align sorter 
stream by sorting cell sorting set-up beads for green-yellow 
lasers. Using one of the sealed 96-well plates to be sorted in, 
sort 50 beads on the seal for each well of row A and H, as well 

3.1   Gating Strategy   
and Staining of T Cell 
Populations

3.2  Preparation 
of Single-Cell Lysate 
and  Cell Sorting  
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as column 1 and 2, and central wells D5, D6, D7, D8, E5, E6, 
E7, E8. Make sure all sorted 50 beads are well centered for 
every well, and adjust Z-position as needed.   

   4.    Run at least 10,000 events to setup the  gating strategy  . To 
improve yield, plan to sort single cells on both the presence of a 
positive viability indicator (e.g., Calcein AM, Life Technologies) 
and the absence of a cell death marker. To limit the number of 
doublet cells being sorted into a single well, perform doublet 
exclusion by plotting of forward and sideward scatters areas, 
heights, and widths (FSC- and SSC-A/-H/-W). There are two 
common options used to gate for singlets using forward and 
sideward scatters. The fi rst is to plot FSC-A vs. FSC- H. Events 
deviating from the diagonal are doublets. The second option is 
to perform a sequential gating. First FSC-H is plotted vs. FSC-W 
and then SSC-H vs. SSC-W. In both dotplots, events with a low 
signal width are to be gated in order to obtain singlets.   

  Fig. 2    T cell sorting strategy for single-cell RNA-sequencing analysis. ( a ) Quadrant  gating strategy   of CD62L 
versus CD45RA, which together defi ne classically established phenotypic  subsets   of T cells. We used this gat-
ing strategy to sort 23 cells per gate per 96-well plate for both CD4 (Lin −  TCRαβ +  CD3 +  CD4 +  CD8 - ) and CD8 
(Lin −  TCRαβ +  CD3 +  CD4 −  CD8 + ) T cells. This enabled us to oversample rare subsets and down-sample abun-
dant cell subsets. Sorted subsets included naïve cells (CD62L +  CD45RA + ), central memory (CM: CD62L +  
CD45RA − ), effector memory (EM: CD62L − CD45RA − ) and short-lived effector cells (EFF: CD62L −  CD45RA + ). Two 
replicate plates were sorted for each of CD4 +  and CD8 +  cells. Our dataset altogether included 396 cells, all 
isolated from the same healthy donor. ( b ) Layout of a 96-well plate of CD4 +  T cells (one plate out of two), show-
ing two rows per subset defi ned in panel  a ; 1 cell was sorted into every well containing 10 μl of lysis buffer. 
Wells B1, D1, F1, and H1 were left emptied as technical control       
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   5.    Perform single-cell  sort   of T cells, sorting a single  cell   into 
each well of the abovementioned 96-well plate containing lysis 
buffer, but leave 1 well empty as a technical control for every 
population to be studied. It is also possible to sort 1000–5000 
cells into 1 well as a small population control. Adjust fl ow rate 
to a minimum, controlling events rate to be lower than 
5000 events/s. Dilute the sample as needed to stay within 
these parameters.   

   6.    Once sorting is complete, seal plate with MicroAmp clear 
adhesive fi lm and centrifuge 1 min at 300 ×  g  4 °C. Immediately 
upon completing centrifugation step, fl ash-freeze on dry ice 
and transfer to −80 °C freezer until ready for lysate cleanup. 
This is the fi rst stopping point of the protocol.      

   We generated our single-cell data using a slightly modifi ed version 
of the  Smart-Seq2   protocol [ 25 – 27 ]. The initial steps of the pro-
tocol including lysis of single cells, lysate cleanup, and  reverse tran-
scription   of mRNA species have been slightly modifi ed and are 
described below. All remaining steps of the protocol can be fol-
lowed using the protocol reported by Picelli et al. [ 26 ], or to 
Trombetta et al. [ 27 ]. The following steps can be performed inside 
a biosafety cabinet or a RNA workstation (if available); otherwise, 
they should be carefully performed on a standard benchtop that 
has been thoroughly cleaned.

    1.    Thoroughly vortex RNA-SPRI beads to ensure a uniform sus-
pension and aliquot volume to be used in PCR strip tubes. 
While bringing RNA-SPRI beads to room temperature (allow 
30 min), use 70 % EtOH and then RNAseZap to clean the 
workbench and all equipment used to process RNA.   

   2.    Once beads are warmed up to room temperature, thaw lysate 
plate on ice for 1 min, and then centrifuge for 1 min at 800 ×  g  
at room temperature. 

  All following steps are done at room temperature unless 
mentioned otherwise.    

   3.    Add 2.2 volume RNA-SPRI  beads   to each well of lysate 
(2.2 × ~10 μl cell lysate = 22 μl of beads to be added per well) 
and mix well by pipetting up and down ten times with P200 
multichannel. Note that the PEG solution of the SPRI beads 
is viscous; it is recommended to use low-retention tips to limit 
the generation of bubbles and loss of material.   

   4.    Incubate lysate and bead suspension for 10 min on bench 
( see   Note    1  ).   

   5.    Move the plate on a 96-well plate magnet (e.g., DynaMag-96 
side-skirted magnet) and incubate for 5 min, while still cover-
ing the plate with a lid. After completing the incubation step, 
remove supernatant from each column of the plate by pipetting 

3.3  Perform Lysate 
Cleanup and  Reverse 
Transcription   of mRNA 
Species
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up in an angle opposite to where the beads have clustered 
against the magnet while being careful to not aspirate the beads 
collected on the side of each well. If beads are aspirated, put 
back the supernatant in the well and wait for 2 min to enable 
the beads to cluster again against the magnet ( see   Note    2  ).   

   6.    Wash beads by adding 100 μl of 80 % ethanol (prepared same 
day with nuclease-free water) to each well. It is important that 
all beads be submerged by the ethanol solution. Move the 
plate sideways back-and-forth 3 times on the magnet, allowing 
the beads to move across the wells, to enable further washing 
of the beads. Make sure to move the plate on both directions 
on the magnet to ensure that both beads in columns 1 and 12 
are washed. Wait for 30 s to allow the beads to cluster on the 
magnet before aspirating ethanol using a P200 multichannel 
pipette. Repeat wash two additional times.   

   7.    Aspirate fi nal ethanol wash with a P200 multichannel pipette 
and then a P20 to ensure that all residual ethanol is removed. 
Leave the plate on the magnet and allow beads to dry for 
10 min at room temperature. Keep plate loosely covered with 
the lid from a fresh box of pipet tips, placed slightly ajar. Beads 
should look cracked within 10 min if all residual ethanol was 
removed properly ( see   Note    3  ).   

   8.    Once bead  pellet   has dried, elute RNA from beads by resus-
pending dried beads in 4 μl of the following mix for every well 
( see   Note    4  ): 

 1 μl RNase-free H 2 O. 
 1 μl of 10 μM of oligo-dT RT primer. 
 1 μl of dNTP mix (10 mM each). 
 1 μl RNase inhibitor dilution buffer (10 % RNase-Inhib, 

fi nal of 4 U/μl).   
   9.    Quickly centrifuge the plate at room temperature, letting the 

speed reach 200 ×  g  and then immediately stop the centrifuga-
tion step. The goal is to collect all drops on the side of the 
wells without getting the beads to settle too much at the bot-
tom of the well.   

   10.    Incubate for 3 min at 72 °C to anneal oligo-dT RT primer   
   11.    Place plate on ice immediately following incubation. Do not 

let the temperature of the thermal cycler go down to 4 °C with 
the plate still inside.   

   12.    Remove seal, add the RT master mix and follow the steps of 
the original protocol [ 26 ], starting at  step 9 .    

  For the remaining steps of the SS2 protocol, involving  reverse 
transcription   step ( see   Note    5  ), PCR amplifi cation ( note that for the 
PCR amplifi cation, 22 cycles were performed to generate the T cell 
data ), quality control assessments of single-cell cDNA, generation 

Single-Cell RNA Sequencing of Human T Cells



214

of sequencing  library  , please refer to Picelli et al. [ 26 ] for the 
detailed description of reagents and following experimental steps, 
or to Trombetta et al. [ 27 ] who also describes the protocol in great 
detail with slight modifi cations. Please note, the next safe stopping 
point in the protocol is after having completed the PCR amplifi ca-
tion; after that step, the cDNA can be safely stored at −20 °C.  

   A major challenge in analyzing scRNA-seq  data   involves teasing 
out reliable biological signals from technical noise. While 
transcriptome- wide measurements of gene expression at single-cell 
resolution enables  heterogeneity   in cell-populations to be studied 
in a truly unbiased manner, one must also note that scRNA-seq 
ultimately relies on amplifying a very small amount of starting 
material. In addition to “amplifi cation noise,” different  library   
preparation methods involve different sources of technical biases 
[ 29 ,  30 ]. Furthermore, as in any other quantitative assay, scRNA- 
seq libraries can exhibit strong variation across technical replicates 
prepared across different days, or by different technicians (“batch 
effects”). Such nonbiological variation can often confound true 
biological signals of interest [ 31 ]. 

 Many of the analysis steps (e.g., alignment of reads to a  refer-
ence genome  /transcriptome) are identical to conventional RNA- 
seq analysis, but some steps (e.g., determining differentially 
expressed genes) are uniquely designed to account for the greater 
technical and biological variability captured across different sam-
ples (individual cells in this regard; see [ 32 ]. It is important to 
carefully design experiments whenever possible so that biological 
 heterogeneity   is not confounded by technical variation [ 31 – 34 ]. 
We believe it is critical that biological and technical replicates be 
included in the experiments and that all the libraries be prepared 
using the same protocol. When this is not possible, the  computa-
tional   analyst must take caution to include technical sources of 
variation as covariates in the analysis to correct for batch effects, 
and interpret biological results conservatively [ 30 – 35 ] .  

 In this section, we describe the canonical steps involved in the 
processing of scRNA-seq data and various kinds of analyses that are 
routinely performed to extract biological information. We note 
that a variety of  bioinformatic   tools and software packages are 
available for scRNA-seq analysis (Table  2 ), and wherever possible, 
we also indicate these alternatives, and refer to some excellent 
papers that review existing state-of-the-art methodologies. 
Importantly, since this is an extremely nascent fi eld, the steps below 
must be regarded as guidelines intended to be as simple as possible 
for a starting user. Advanced users are encouraged to explore and 
compare alternative strategies.

     Sequencing data generated by an  Illumina    sequencer   are conven-
tionally stored in the FASTQ format, in the form of fi les carrying 
the .fastq or .fastq.gz extension. Successful sample  demultiplexing   

3.4  Single-Cell 
RNA-Seq Data 
Analysis

3.4.1  Alignment 
and Quantifi cation 
of  Sequencing Reads  

Alexandra-Chloé Villani and Karthik Shekhar



215

results in a single FASTQ fi le (for single end sequencing), or a pair 
of FASTQ fi les (for paired end sequencing) for each sample. The 
two mate-pairs in paired-end reads are typically referred to as the 
“left read” and “right read” respectively. The fi rst step in data anal-
ysis is to align these sequencing reads to a reference transcriptome, 
and obtain quantitative expression levels across various genes and 
transcripts for each single-cell sample ( see   Note    6  ). 

 The following workfl ow for alignment and quantifi cation of 
single-cell RNA-seq reads uses publicly available software packages 
that can be run as commands on a standard Unix terminal, on a 
standard desktop/laptop or server. For researchers with minimal 
 computational   background, we note that these tools are also acces-
sible on a drag-and-drop GUI interface on GenomeSpace [ 36 ], a 
Web-based portal that supports a wide-range of  bioinformatics   
tools for integrative genomics and transcriptomics analysis, 
and data management (  http://www.genomespace.org    ). Upon 
creating an account on the website, users can view a number 
of “recipes” for common bioinformatics tasks, each utilizing 
 multiple tools. Recipes include detailed instructions and videos. 

      Table 2  
  Software packages for scRNA-seq analysis   

 Package name 
(language of 
implementation)  Functions  References 

 ZIFA (Python)  Dimensionality reduction algorithm that accounts for transcript 
dropouts in single-cell data 

 [ 66 ] 

 Monocle (R)  Mapping transcripts on differentiation cascades, and arranging single 
cells along a differentiation tree (pseudotime estimation) 

 [ 67 ] 

 scLVM (Python)  Dissecting cofounding sources of variation (e.g., differentiation vs. 
cell-cycle) in scRNA-seq data 

 [ 68 ] 

 SCDE (R)  Testing for differential expression in scRNA-seq data where technical 
artifacts abound (transcript dropouts,  library   quality variation) 

 [ 32 ] 

 BASiCS (R)  A Bayesian framework to normalize and assess biological/technical 
variation in scRNa-seq data 

 [ 69 ] 

 Seurat (R)  Spatial mapping of single-cell transcriptomes based on a preexisting 
spatial pattern of landmark genes. R package also includes wrapper 
functions for analysis and visualization 

 [ 75 ] 

 Pagoda (R)  Pathway and geneset overdispersion analysis  [ 70 ] 

 Sincell (R)  Assessment of cell-state hierarchies  [ 71 ] 

 RaceID (R)  Rare cell type identifi cation in complex populations of single cells  [ 72 ] 

 Scuba (Matlab)  Extracting lineage relationships from single-cell data  [ 73 ] 

 Scater (R)  R-based package for quality control, visualization, and preprocessing  [ 74 ] 
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GenomeSpace is free to use, and each account is provided some 
cloud storage. For analysis of large datasets, the best practice use of 
GenomeSpace is to connect an account directly to cloud-based 
storage, such as Dropbox, Google Drive, or Amazon S3 buckets. 
We recommend the Unix-based workfl ow for users that have access 
to suffi cient computing resources in their home institution.

  Install Necessary Software Packages 

   1.    The following programs/software should be installed locally 
or on a server:
  Programs for Read  Alignment   and Quantifi cation 
   (a)    TopHat:   https://ccb.jhu.edu/software/tophat/index.

shtml    .   
   (b)    Bowtie2:   http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml    .   
   (c)    Kallisto:   http://pachterlab.github.io/kallisto/    .    

  Programs for Visualizing Alignment and Generating Quality 
Metrics 
   (d)    Samtools:   http://samtools.sourceforge.net/    .   
   (e)    Picard tools:   http://broadinstitute.github.io/picard/    .   
   (f)    Integrative Genomics Viewer (IGV):   https://www.

broadinstitute.org/igv/    .    

  Programming Environment for Performing Statistical Analysis 
of Gene Expression and Clustering 
   (g)    R:   https://www.r-project.org/    .   
   (h)    RStudio:   https://www.rstudio.com/products/RStudio/    .    

      Aligning Reads to the Genome Using TopHat 

   2.    TopHat is a fast splice  junction   mapper that aligns paired-end 
reads to a desired  reference genome   [ 37 ]. Commonly used 
spliced aligners are reviewed by Engström et al. [ 38 ].
    (a)    Download pre-built genome indexes for a number of 

model organisms from the following link,   https://ccb.
jhu.edu/software/tophat/igenomes.shtml    . 

 These can also be prepared by the user by following 
instructions on the TopHat website.    

    (b)    FASTQ fi les for the left and right read fi les are required 
for each sample in case of paired-end sequencing data. 
Run TopHat as follows for each sample ( see   Note    7  ):
      % tophat [options] <genome_index_base> [sample 
ID_leftreads.fastq] [sampleID_rightreads.fastq]  
     TopHat   also allows for single-end reads as input. See 
  https://ccb.jhu.edu/     software/tophat/manual.html for 
details regarding  [options] .    
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    (c)    Most alignment software output their results as SAM/
BAM fi les, which are standard fi le formats within the 
genomics community ( see   Note    8  ). The output of TopHat 
consists of several fi les including  accepted_hits.bam , which 
summarizes the alignment information in the BAM fi le 
format, that can be viewed in a human readable format 
using samtools:
      % samtools view accepted_hits.bam  

              3.    Most downstream  programs   (e.g., IGV) prefer a BAM fi le 
wherein the aligned reads are sorted according to their loca-
tions in the  reference genome  , and subsequently indexed for 
fast access. Sort BAM fi le using samtools:

      %samtools sort accepted_hits.bam accepted_
hits.sort  
    The above command will produce  accepted_hits.sort.

bam . Next, index the fi le for easy retrieval by downstream 
programs:

      % samtools index accepted_hits.sort.bam  
        Performing  QC   and Visualizing read Alignments 

   4.    The Picard-Tools suite provides a set of Java-based command 
line tools that can effi ciently manipulate SAM/BAM fi les and 
also provide important QC metrics regarding the quality of 
the alignment (e.g., mapping rate, ribosomal RNA content, 
and number of genes detected). For example, the following 
command collects statistics on the number of reads that cor-
rectly align to the  reference genome  :
      % java –jar <picard-location>/CollectAlignmentSummary 
Metrics.jar [options] I=accepted_hits.sort.bam 
O=sampleID_align_metrics.txt  

    See   http://broadinstitute.github.io/picard/command-
line- overview.html     for details on all the available command line 
tools, and their use-cases. Additional software packages for 
extracting QC metrics from BAM fi les are available ( see   Note    9  ).    

    5.    The  sequence   alignment summarized in the BAM fi le can be 
graphically visualized using the Broad Institute’s Integrative 
Genomics Viewer (IGV) program (  https://www.broadinsti-
tute.org/igv/    ). Once opened, IGV allows the user to select an 
appropriate  reference genome   and transcriptome annotation. 
The  accepted_hits.sort.bam  can then be loaded here and visu-
alized as a graph of alignment counts at each location in the 
genome. Multiple BAM fi les corresponding to different sam-
ples can be loaded simultaneously and visualized as individual 
tracks ( see   Note    10  ).    
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  Quantifying Transcript/Gene Abundances 

   6.    Analysis of gene  expression    heterogeneity   in single-cell RNA- 
seq data requires the quantifi cation of gene or transcript abun-
dances from the alignment of reads. A number of software 
packages are available for this purpose ( see   Note    11  ), and 
many review articles and protocols summarizing alternative 
workfl ows have been published [ 37 ,  38 ]. Here we have used 
Kallisto, an extremely fast and memory effi cient program to 
quantify abundances of transcripts from RNA-seq data through 
“pseudoalignment” ([ 40 ];  see   Note    12  ). Kallisto requires the 
user to build an index of the transcriptome from a FASTA fi le 
( see   Note    13  ), containing the nucleotide  sequences   of the 
transcripts/gene targets that the user wishes to quantify:

      % kallisto index -i [<index-location>/transcripts.idx] 
[transcripts.fasta.gz]  

    Some transcriptome FASTA fi les can be downloaded from 
  http://bio.math.berkeley.edu/kallisto/transcriptomes/     or 
they can be downloaded from the UCSC table browser 
(  https://genome.ucsc.edu/cgi-bin/hgTables    ). Once the 
index is built ( see   Note    14  ), run the following command to 
quantify the gene/transcript abundances for each sample:

      % kallisto quant -i [[<index-location>/transcripts.idx] -o [sampleID] 
[sampleID_leftreads.fastq] [sampleID _right reads.fastq]  

    Additional options for single-end reads,  multithreading   
and uncertainty estimates using bootstrapping are detailed in 
the Kallisto website:   https://pachterlab.github.io/kallisto/
manual.html    .    

    7.     kallisto quant  produces a tab-separated text fi le  sampleID/ 
abundance.tsv, which summarizes the estimated numbers of 
RNA-Seq fragments derived from the corresponding tran-
scripts and normalized transcript-per-million (TPM) values 
within the sample for each transcript/gene target listed in the 
transcriptome index  [transcripts.idx]  as separate columns 
( see   Note    15  ). These count or TPM columns can be read into 
a programming language environment like R or python, and 
merged into a single tab-delimited expression matrix fi le prior 
to further exploration of the data ( see   Note    16  ).    

  In the following section, we explore cellular  heterogeneity   by 
analyzing the expression matrix, identify subpopulations of cells in 
the dataset and the gene signatures that defi ne them. While we use 
the T-cell dataset as our working examples, these can be applied to 
other datasets. The expression data used here is available upon 
request to the authors by e-mail.  
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   Single cells resident in blood or tissues are a mixture of multiple 
cell types (e.g., T cells vs. B cells) and cell-states (naïve vs. activated 
CD8+ T cells). Bulk expression measurements provide an average 
readout over multiple diverse states, and thus conceal the underly-
ing  heterogeneity  . In a number of situations, none of the underly-
ing individual cell states might be represented in the average 
measurement, a phenomenon known as Simpson’s paradox [ 12 , 
 41 ]. Single-cell RNA-seq measurements can thus provide a more 
accurate picture of transcriptional heterogeneity across multiple 
cells, and  computational   techniques rooted in machine learning 
may be fruitfully applied to explore key genes driving heterogene-
ity in the data (e.g., via principal components analysis), infer cell- 
types and cell-states in a completely unbiased  manner   (e.g., 
clustering), and fi nd biological processes that are refl ected in genes 
differentially expressed in one condition vs. another (e.g., pathway 
analysis). Here we describe some of these techniques in the context 
of T cells isolated from blood. These steps can serve as a template 
for the user to analyze data from an alternative expression matrix, 
although some steps might require slight modifi cations (e.g., based 
on alternative sample naming conventions). 

 The following steps are implemented in R (  https://www.r- -
project.org    ), a freely available, extremely versatile and popular pro-
gramming language for  bioinformatics   analysis. Upon installing R, 
we recommend that users install RStudio, a free and open source 
integrated development environment (IDE) for R, which provides 
an easy to use desktop application for writing and running R 
scripts, and allows users to organize their code. 

 It is conventional for  bioinformatics   research groups to create 
a “software package” in R to accompany the publication of a 
method. A number of useful packages are compiled and curated as 
part of the “Bioconductor” project [ 42 ], and these packages can 
be easily installed and loaded into RStudio. The following work-
fl ow uses a number of available packages ( see  Table  2 ).

  Set Up the Environment, and Install Necessary Packages 

   1.    Open RStudio, and create a working directory. Copy the kal-
listo inferred-read counts (rows = genes, columns = cells), and 
separately transcripts per million (TPM) values of gene expres-
sion as tab-delimited text fi les  Counts.txt  and  TPM.txt  into 
this directory ( see   Notes    15   and   16  ). The packages  ggplot2 , 
 plyr ,  NMF , and  tsne  can be installed using the  install.pack-
ages()  function.
      > install.packages("ggplot2")  
  > install.packages("plyr")  
  > install.packages("NMF");  
  > install.packages("tsne");  

3.4.2  Exploring 
Single-Cell Heterogeneity 
and Structure Using 
the Expression Matrix
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    Install the differential expression analysis package  SCDE   
by following instructions on the website (  http://hms-dbmi.
github.io/scde/    ). Once installed in the user’s repository, 
these packages can be loaded on to the working session as:

       library    (ggplot2)  
   library    (plyr)  
   library    (NMF)  
   library    (tsne)  
   library    (scde);  
        Explore the Data 

   2.    Read the counts and TPM matrix into R,

     > Counts_mat  =  read.   table    ("Counts.txt", header =TRUE, sep = "\t", 
row.names = 1, quote = "");  
 > TPM_mat  =  read.table("TPM.txt", header = TRUE, sep = "\t", 
row.names = 1, quote = "");  

    Check the fi rst fi ve  rows   and three columns of the TPM 
matrix to make sure the data loaded correctly,

      > TPM_mat[1:5,1:3]  
                   CD4.EM_S33_S308 CD8.CM_S44_S188 CD4.CM_S38_S152  
  C9orf152            0.00           0.00           0.00  
  RPS11             533.49        1954.74          21.17  
  ELMO2               0.00           0.00           0.00  
  CREB3L1             0.00              0.00        0.00  
  PNMA1               0.00              0.00        0.00  

    Here the rows and columns represent genes and cells. 
“CD4.XX” and “CD8.XX” denote CD4 +  and CD8 +  T cells, 
while “CD8.EM,” “CD8.CM,” “CD8.EF,” and “CD8.NA” 
denote effector memory, central memory, effector, and naïve 
CD8 +  T cells (and similarly for CD4 +  T cells). These cells were 
labeled according to the quadrant gating they were sorted 
from (see   Gating strategy     and staining of T cell populations  sec-
tion). For every column, name letters preceding the fi rst 
underscore symbol (“_”) represents the cell type based on 
sorting, while the letters following it represents a unique iden-
tifi er for that cell. For example Column 1 is an effector mem-
ory CD4 +  T cell with a label “S33_S308.” 

 The total number of genes and  cells   in the dataset can be 
queried as the number of rows and columns in the expression 
matrix,

      > dim(TPM_mat)  
  [1] 23686 368  

    implying 23,686 genes (rows) and 368 cells (columns). 
It is common practice to exclude cells that do not meet user-
specifi ed quality criteria (e.g., low mapping rates, and high 5′ 
or 3′ bias) that can be obtained from Picard Tools or other 
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programs. Here we only include libraries that have more than 
3000 detected genes but no more than 10,000 detected genes.

      genes.detected  =  apply(TPM_mat, 2, function(x) sum(x  >  0))  
  cells.use  =  (genes.detected > = 3e3) & (genes.detected  <  1e4)  
  TPM_mat1  =  TPM_mat[,cells.use]; Counts_mat1  =  Counts_mat[,cells.use]  

    Note that these cutoffs are data-dependent, both on the cell 
type/state and  library   quality (i.e., sequencing depth, alignment 
rate). Here we chose the minimum cutoff of number of genes 
detected per cell one standard deviation less than the mean value 
(~4500) of this quantity in our data. We also excluded a few outlier 
libraries that had more than 10,000 genes detected, as these were 
likely to be multiple cells sorted into a single well. The total num-
ber of cells in each of the eight  samples   (“CD8.EM,” “CD4.NA,” 
etc.) can be queried as,

      > sample.ids  =  sapply(colnames(TPM_mat1), function(x) strsplit(x,"_")
[[1]][1])  
  > table(sample.ids)  
  CD4.CM CD4.EF CD4.EM CD4.NA CD8.CM CD8.EF CD8.EM CD8.NA  
      45     45     46     44     43     46     45     43  

    The fi rst command extracts the cell-type from the list of 
column names, which as mentioned above, have the format 
“CellType_SampleID.” Thus individual samples in our dataset 
have 43–46 cells, totaling 357 cells.    

    3.    It is good practice to explore the data, and make sanity checks 
before applying fancy  computational   techniques. A common 
approach is, for example, to make plots describing summary 
statistics of  library   quality (Fig.  3a–c ) and expression patterns 
of key marker genes. A code to make simple barplots with 
error bars is provided in  Note    17  . The following command 
summarizes the average number of transcriptome mapped 
 reads   per cell, and the average number of genes detected per 
cell in each of the 8 samples (Fig.  3a, b ),

       > barplot_tcell(x = colSums(Counts_mat[,cells.use]), id = sample.ids, 
name = "Num. Mapped Reads per cell")  
  > barplot_tcell(x = genes.detected[cells.use], id = sample.ids, 
name = "Num. Genes per cell")  

    Figure  3c , which summarizes the mapping rate of reads to 
the genome, transcriptome and ribosomal RNA was created 
using the output of Picard-Tools  CollectAlignmentSummary 
Metrics.jar  introduced previously (could not be reproduced 
because of space constraints).    

    4.    Another commonly asked question is: have libraries been 
 sequenced   to suffi cient read-depth? A  computational   answer 
can be derived by randomly down-sampling the read counts 
within the counts matrix to varying degrees, and asking how 
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  Fig. 3    Visualizing quality controls in single cell RNA-sequencing data  a  and  b . Barplots summarizing average 
number of reads mapped to the transcriptome per cell ( a ), and the average number of genes detected per cell 
( b ) in each of the 8  subsets  . ( c ) Barplots reporting summary statistics of the percentage of the genome-
mapped ( red ), percentage of transcriptome-mapped ( green ) and percentage of ribosomal-RNA ( blue ) reads for 
each subset profi led, as a percentage of total  sequenced   reads. ( d, e ) Saturation curves for CD4 +  effector cells 
(CD4 + CD62L −  CD45RA + ) and CD8 +  effector cells (CD8 + CD62L −  CD45RA + ) reveal that deeper sequencing of 
these libraries can detect more genes. Briefl y, every single-cell  library   is randomly “downsampled” to a certain 
proportion of the initial number of mapped reads 100 times, and the average number of detected genes is 
recorded. Performing this exercise at 20 values of downsampling proportions (5–98 %) yields a curve for every 
cell. The curves show that around 80 % of genes detected at full depth are detectable at 75 % of the sequenc-
ing depth, which is around two million reads per cell. The upward slope of the curves at fraction = 98 % sug-
gests that deeper sequencing can be benefi cial       
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sharply the number of detected genes falls as reads are removed. 
Figure  3d, e  show the resulting “saturation curves” for CD4 
and CD8 EF cells (computational procedure for downsam-
pling is described in the fi gure legend. The code not be repro-
duced in this note because of space constraints).   

   5.    One can also plot the average  expression   of known marker 
genes within every group to verify whether their expression 
conforms to biological expectations. For example, when 
profi ling T cells, one can look at: CD4 co-receptor ( CD4 , 
expressed only on CD4 +  T cells; Fig.  4a ), CD8 co-receptor 
alpha chain ( CD8A , expressed only in CD8 +  T cells, Fig.  4b ), 
L-selectin ( SELL /CD62L, a lymph node homing receptor 
predominantly expressed in naïve and central memory cells; 
Fig.  4c ), and CD45 antigen/ PTPRC  (expressed in all T 
cells; Fig.  4d ).

  Fig. 4    Expression of known T cell markers ( a – d ). Illustrative barplots showing the expression (average ± SD 
log(TPM + 1)) of key marker genes across the 8  subsets  . ( a )  CD4 , gene encoding for CD4 co-receptor. ( b )  CD8A , 
gene encoding the alpha-subunit of the CD8 co-receptor. ( c )  SELL , gene encoding the lymph node homing 
receptor CD62L, expressed predominantly on circulating T cells. ( d )  PTPRC , gene encoding the CD45 antigen, 
expressed on all T cells       
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       > logTPM_mat1  =  log(TPM_mat1 + 1)  
  > barplot_tcell(x  =  logTPM_mat1["CD4",], id = sample.ids, name = "CD4 
log(TPM + 1)")  
  > barplot_tcell(x  =  logTPM_mat1["CD8A",], id = sample.ids, name = "CD8A 
log(TPM + 1)")  
  >barplot_tcell(x = logTPM_mat1["SELL",], id = sample.ids, 
name = "CD62L/SELL log(TPM + 1)")  
  > barplot_tcell(x = logTPM_mat1["PTPRC",], id = sample.ids, 
name = "CD45/PTPRC log(TPM + 1)")  

     See  Fig.  4a–d  for these plots. It is common practice log 
transform the TPM + 1 values instead of using the raw TPMs. 
This causes the data points to more uniformly spread across 
their dynamic range, and also makes it easy to interpret 
differences between the transformed values as “fold changes.” 
The addition of 1 ensures that zero TPM values remain zero 
in the transformed units.    

  Perform Principal Components Analysis (PCA) 

   6.    PCA is a conceptually  straightforward  , yet an effi cient and 
robust, approach [ 43 ] to perform unsupervised exploratory 
analysis on the data, and to identify structure within the single- 
cell data driven by the correlated expression of gene modules. 
It has been used successfully in a number of recent single-cell 
RNA-seq papers [ 44 – 47 ]. Here we apply PCA on the 357 
cell- data while being completely blind to the cell-type labels of 
cells from the sorting procedure. We will then ask whether 
such an unbiased analysis is able to separate the different 
sorted populations. PCA takes as input an expression matrix, 
with rows as genes and columns as cells.
    (a)     Selection of variable genes:  A typical practice is to perform 

PCA using only those genes that show appreciable varia-
tion within the data, and avoid genes that are poorly 
expressed. The following R code selects genes that are 
expressed by at least 40 % of cells in any of the 8 samples 
at log(TPM + 1) > 4.5, and that have a coeffi cient of varia-
tion across all the  cells   higher than 0.5 ( see   Note    18  ):

      > pca.genes  =  c()  
  > groups = unique(sample.ids)  
  > for (i in groups){  
  cells = grep(i, colnames(TPM_mat1), value = TRUE)  
  include.genes = apply(logTPM_mat1, 1, function(x) ((sum(x[cells] > 4.5) / 
length(cells)  >  0.4) & sd(x)/mean(x)  >  0.5))  
  pca.genes = union(pca.genes, rownames(TPM_mat1)[include.genes])  
  }  
  pca.genes  comprises 678 genes, as can be checked by the  length()  func-
tion: 
  > length(pca.genes)  
  [1] 678  

Alexandra-Chloé Villani and Karthik Shekhar



225

          (b)     PCA:  Use the log-transformed TPM matrix as input to 
PCA, but rescale its rows to have zero-mean and unit 
standard deviation. This normalization procedure, termed 
“z-scoring” or “standardizing,” ensures that relative 
expression variation in all genes is treated equally  irrespec-
tive   of their absolute expression levels. Standardizing can 
be turned on in the R function  prcomp,  which imple-
ments PCA.

      > pca_result  =  prcomp(t(logTPM_mat1[pca.genes,]), center = TRUE, 
scale = TRUE)  

            Examine PCA Scores for the Presence of Cell-Subpopulations 

   7.    Conceptually, PCA fi nds successive mutually independent lin-
ear combinations of genes that maximally capture correlated 
variation in the data. Such correlated variation might arise due 
to the presence of “gene modules”—groups of genes whose 
expression levels are highly correlated because of a common 
biological connection (e.g., response to T cell  stimulation  ). 
Each linear combination of genes is called a “principal direc-
tion” and is ordered by the amount of variance in the data it 
captures (high to low). For every principal direction, the coef-
fi cient corresponding to every gene in the linear combination 
determines the extent to which that gene “drives” the varia-
tion captured by the principled direction, and is referred to as 
the gene’s “loading.” Genes whose loadings along a principal 
direction are high in magnitude and share the same sign are 
typically positively correlated within the data. 

 Each individual cell, which corresponds to a column in the 
expression matrix, can then be projected on to each of these 
principal directions yielding a vector of “scores” for  that  cell, 
and so on for all the cells. The vector of scores for all the cells 
along the fi rst principal direction is referred to as the fi rst 
“principal component” of the data (PC1), and so on. The 
matrices corresponding to the  loadings   (genes × PCs) and 
scores (cells × PCs) as column vectors may be directly extracted 
from the output of  princomp  as follows:

      pca.loadings  =  data.frame(pca_result$rotation)  
  pca.scores  =  data.frame(pca_result$x)  

    With a PCA transformation in hand, a straightforward 
way to visualize subpopulation structures in the data is to 
make a 2D- scatter plot of cells based on the values of their PCs 
( see   Note    19   for scatter plot code).

     > scatter_plot(X = pca.scores[,1:2], id = sample.ids, axis.labels = c("PC1","PC2")) 
 > scatter_plot(X = pca.scores[,3:4], id = sample.ids, axis.labels = c("PC3","PC4")) 
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    The output of these commands, Fig.  5a, b , reveals that 
PCA separates the different subpopulations (Note that the 
PCA procedure was completely blind to the subpopulation 
identities of the T cells). PC1 in particular appears to separate 

  Fig. 5    Unsupervised analysis using PCA separates cell- subsets    a  and  b . Scatter plots of PCA-scores of single- 
cells, along PC1-PC2 (Panel  a ) and PC3-PC4 (Panel  b ). Each point is a cell with its location plotted as value of the 
“score” assigned by PCA along the corresponding PC. In Panel a, PC1 ( x -axis) separates naïve cells (+ symbol) 
from the remaining subsets. PC2 ( y -axis) separates CD4 +  T cells ( red ) from CD8 +  T cells ( blue ). ( c ,  d ) Top genes 
( x -axis) driving the variation captured by PC1 and PC2, and their relative weights or loadings ( y -axis). Genes with 
high positive or negative loadings are the primary contributors. The gene with the most negative loading in PC1 
( c ) is  SELL  (also called L-selectin or CD62L), the lymph node homing receptor expressed in naïve and central 
memory cells but not effector and effector memory cells, while genes driving PC2 (d) include known CD8 +  T cell 
related genes such as  CD8A ,  CD8B , and  PRF1 . This mirrors the observation in Panel  a  with PC1 ( x -axis) separat-
ing naïve T cells from the other subsets, and PC2 ( y -axis) separating CD8 +  T cells from CD4 +  T cells       
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naïve from memory and effector cells, while PC2 separates 
CD4 +  from CD8 +  T cells. PC3, on the other hand separates 
central memory CD8 +  T cells from the rest. These fi gures also 
suggest that the naïve cells are transcriptionally more distinct 
than the effector and memory cells (CM and EM).

       Examine  PCA   Loadings to Identify Key Genes That Drive Variation 

   8.    Different principal directions (columns of the  pca.loadings ) 
are orthogonal vectors in multidimensional gene-expression 
space that describe prominent patterns of correlated variation. 
Genes with large positive values in a given loadings vector are 
positively correlated with each other along the direction of the 
vector, as are the genes with large negative values; however, 
these two groups of genes are anti-correlated with each other 
along that direction. It is usually very instructive to look at 
some of the top genes (positive and negative) driving individ-
ual principal directions using bar plots ( see   Note    20   for code):

      barplot_loadings(X = pca.loadings,pc.use = 1,num.genes = 10)  
  barplot_loadings(X = pca.loadings,pc.use = 2,num.genes = 10)  

    Figure  5c, d  shows that a number of known T cell related 
genes feature among the top genes driving PC1 and PC2. The 
gene with the most negative loading in PC1 is  SELL  (also 
called L-selectin or CD62L), the lymph node homing recep-
tor expressed in naïve and central memory cells but not effec-
tor and effector memory cells (Fig.  5c ). Also featured is  LEF1 , 
a  transcription factor   that is essential for early T cell develop-
ment [ 48 ]. This refl ects the separation of naïve cells from the 
other cells along the PC1 axis in Fig.  5a . Genes  driving   PC2 
(Fig.  5d ) include known CD8 +  T cell related genes  CD8A , 
 CD8B ,  PRF1  ( perforin  ),  NKG7  (negative loadings), and 
CD4 +  T cell enriched genes  CD4 ,   CCR4   , and  MX1  (positive 
loadings), which  mirrors the separation of these cells along the 
PC2 axis in Fig.  5a  [ 49 ]. 

 We emphasize that these patterns were captured in a com-
pletely unsupervised manner by PCA from the list of highly 
variable genes, and were in no way “selected” based on their 
known biological roles.    

  Visualize PCA Results on a 2D Map Using t-Distributed Stochastic 
Neighbor Embedding ( t-SNE  ) 

   9.    Important modes of biological variation might manifest across 
multiple PCs, and thus incorporating multiple PCs into the 
analysis might be important to separate phenotypically/func-
tionally distinct subpopulations of cells. A powerful way to 
visualize information contained in multiple PCs is to use the 
 t-SNE   algorithm [ 50 ], which performs nonlinear dimension-
ality reduction and generates a 2D scatter plot of cells, captur-
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ing the essence of the variation contained across multiple PCs. 
The algorithm, implemented in the R-package  tsne,  needs as 
input a user-defi ned number of principal component values for 
all the cells. 

 There is no general  answer   to how many principal compo-
nents one must consider, and describing tests for statistical sig-
nifi cance of PCs is outside the scope of this protocol (see [ 51 ] 
for a review of this topic). Here we choose to keep the top 10 
principal components in the data:

      set.seed(10)  
  tsne.proj = data.frame(tsne(pca.scores[,1:10]),whiten = FALSE)  
  colnames(tsne.proj) = paste0("tsne_",c(1:2))  
  scatter_plot(X = tsne.proj, id = sample.ids, axis.la-
bels  =  c("tSNE_1","tSNE_2"))  

    Figure  6a  shows the  t-SNE   plot. Compared to the PCA 
scatter, the distinction between multiple  subsets   now becomes 
much sharper now that we are incorporating more informa-
tion (a total of 10 principal components in the visualization). 
Also note that while the CD4 +  and CD8 +  cells cluster sepa-
rately, as do the naïve cells from the other subsets, the EF, CM 
and EM cells are spread within a single large cluster for both 
CD4 +  and CD8 +  cells, highlighting that the expression of very 
few genes contribute towards distinguishing these subsets.

   Additionally one can also  explore   the presence of batch 
effects by coloring individual points on the PCA/ t-SNE   plots 
by their batch ID. Figure  6b  shows that the cells cluster by 
their type (CD8 +  vs. CD8 + ) rather than their plate ID, suggest-
ing that batch effects are absent/weak in our data. Alternatively 
one can also color points by their  library   quality metrics (e.g., 
number of genes detected and mapping rate) to explore 
whether technical effects drive the dominant modes of varia-
tion in the data. A number of  computational   strategies have 
been published to correct for batch effects (Table  2 ) [ 34 ,  52 ]. 

 Typical downstream steps involve partitioning the cells 
into different discrete “ subsets  ” using methods such as hierar-
chical, k-means or density based clustering, which we do not 
describe here. Many such methods, however, are available as R 
packages [ 53 – 55 ].    

  Finding Differentially Expressed Genes 

   10.     Finding differentially expressed (DE) genes:  An important task 
in gene expression analysis is to fi nd which genes are differen-
tially expressed between two  subsets   of cells. Finding a set of 
DE genes might provide important clues regarding biological 
pathways that might be active in one subset compared to 
another, for example. Finding a set of reliable DE genes is a 
statistical exercise, and methods must take into account the 
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important sources of technical variability in the data (“noise”). 
One of the most important sources of uncertainty in scRNA- 
seq  data   is the low capture rates of transcripts during the 
 reverse transcription   step ( see   Note    5  ), which can lead to the 
“dropout” of genes in some libraries, even though they have 
non-zero expression in the biological sample [ 31 ]. Another 
source of technical noise is the differences in the quality of 
libraries that some cells produce because of upstream condi-
tions (e.g.,  apoptosis   in some cells, or RNA degradation). In 
any ordinary setting, these can confound true biological 
differences.    

  We use the R-package Single Cell Differential Expression 
(SCDE, Table  2 ) for performing differential expression analysis, 
which adopts a Bayesian approach to account for technical sources 
of variation typical in scRNA-seq [ 31 ]. SCDE may be invoked as 
follows for fi nding differentially expressed genes between CD4 +  
naive cells and CD4 +  effector memory cells ( see   Note    21  ):

      markers.CD4 = scde_test(C = Counts_mat1, grp1 = "CD4.EM", grp2 = "CD4.NA", 
min.fold = 3)  
  nrow(markers.CD4)  
  [1] 733  

    The last output suggests that  SCDE   was able to detect 733 
genes differentially expressed between naïve and effector  memory 
T cells   at an average log-fold change higher than 3 between the 
 subsets  . The  heatmaps   in Fig.  6  depict these results vividly, and 
were generated using the following commands:

      CD4.NA.cells  =  sample.ids == "CD4.NA"  
  CD4.EM.cells  =  which(sample.ids == "CD4.EM")  
  A = t(scale(t(logTPM_mat1[rownames(markers.CD4[order(markers.CD4$mle),]), 
c(CD4.NA.cells,CD4.EM.cells)])))  
  aheatmap(A,color = "-RdYlBu2:10", Rowv = NA, Colv = NA)  

    We repeated the above steps to fi nd differentially expressed 
genes between naïve and effector memory CD8 positive T cells, 
which yielded 761 differentially expressed genes (Fig.  6c, d   heat-
map  ). Interestingly, 151 genes were common between the two 
sets, a result that was highly statistically signifi cant ( p  < 10 −42 , hyper-
geometric test).    

4    Conclusions 

 Our aim in this chapter is to introduce the uninitiated T cell biolo-
gist to key experimental and  computational   steps in single cell 
RNA-sequencing  analysis  . Through our working example, we 
show that profi ling of human T cells using scRNA-seq enables 
hypothesis-free evaluation of cellular expression states using 
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off- the- shelf computational methods. A key challenge for the 
future is to use this powerful technique to explore the causes and 
consequences of T cell  heterogeneity   in a number of contexts, 
ranging from function  exhaustion   in diseased states to the interplay 
between clonal dynamics and expression state during  immune 
responses  .  

5                             Notes 

     1.    If this procedure is performed on a standard bench top (i.e., 
not in an RNA fume hood), keep the plate covered (e.g., using 
the lid from a fresh box of pipet tips, placed slightly ajar) to 
prevent dust and debris from falling into samples during pro-
cedure, thus limiting contamination.   

   2.    The magnet described draws the beads to alternating sides of 
each column of the plate. It is therefore recommended to use 
a P200 eight-channel pipette to remove the supernatant.   

   3.    Let the beads dry on the magnet to limit dried beads from 
leaving the wells and cross-contaminate adjacent wells. 
Furthermore, as beads are electrostatics, recovery will be 
improved if beads are dried on the magnet. Noteworthy, allow-
ing beads to dry for too long (beyond 10 min) may impair 
recovery of RNA. Immediately proceed with protocol when 
visible cracks appear in the pellet of beads. If all residual etha-
nol was promptly removed, beads should crack within 10 min.   

   4.    Once the beads are dried, it is best to deposit the 4 μl of mas-
ter mix on the bead pellet while the plate is still on the magnet 
to limit bead loss, which could otherwise easily escape the well 
once dried if not on the magnet because of their electrostatic 
properties. Then carefully move the plate away from the mag-
net and resuspend the 4 μl with P20 multichannel and low 
retention tips. The solution should be homogeneous after 
resuspension; it is important to pipette slowly to limit the gen-
eration of bubbles.   

  Fig. 6    Unsupervised clustering analysis of different T cell  subsets  . ( a ) tSNE scatter plot of 180 CD4 +  ( red ) and 
177 CD8 +  ( blue ) T cells, which was generated using the top 10 principal components in the data. The subsets 
are highlighted by different symbols. ( b ) The data was generated through 2 experimental batches (2 batches 
of 96 CD4 +  and 96 CD8 +  cells each). The mixing of cells from the two batches ( red circles  and  blue squares ) 
in the tSNE plot in panel  b  suggests that no signifi cant batch effects are observed across the 180 CD4 +  and 
177 CD8 +  T cells analyzed. ( c ,  d ) Heatmaps were generated to illustrate the output from using SCDE software 
package. Heatmap in panel ( c ) highlights the 733 genes differentially expressed between naïve and effector 
memory CD4 +  T cells at an average log-fold change higher than 3 between the subsets. ( d ) Heatmap of the 
761 differentially expressed genes expressed between naïve and effector memory CD8 +  T cells       
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   5.    For the  reverse transcription   (RT) step of the SS2 protocol, 
both Picelli et al. [ 25 ,  26 ], and Trombetta et al. [ 27 ] recom-
mend using SuperScript II Reverse Transcriptase 
(ThermoFisher Scientifi c), while Satija et al. [ 75 ] reports using 
instead Maxima Reverse Transcriptase (ThermoFisher 
Scientifi c), which is signifi cantly cheaper. As described above, 
the RT step can be ineffi cient with low capture  rates   of tran-
scripts during the RT step, resulting in an important source of 
uncertainty in scRNA-seq data and leading to the “dropout” 
of genes in some libraries. If a low number of transcripts are 
detected, it is possible to troubleshoot the experimental sys-
tem being used by trying different reverse transcription 
enzymes. Noteworthy, when using switching RT enzyme, it is 
important to adjust the optimal reaction temperature follow-
ing the manufacturer’s recommendation (e.g., SuperScript II 
Reverse Transcriptase optimal reaction temperature is 42 °C, 
while Maxima Reverse Transcriptase’s is between 50 and 
55 °C). In the case of T cells, both the SuperScript II Reverse 
Transcriptase and the Maxima Reverse Transcriptase work well 
at optimal reaction temperature. The data included in the fi g-
ures of this protocol were generated using SuperScript II 
Reverse Transcriptase. Additionally, as originally reported by 
Picelli et al. [ 25 ,  26 ], trehalose and betaine may be added to 
the RT mix to limit the formation of RNA secondary structure 
(e.g., hairpins or loops) during the RT reaction, which might 
cause the enzyme terminating chain elongation owing to ste-
ric hindrance.   

   6.    Reference transcriptomes are usually available as a FASTA fi le of 
transcript  sequences  , or as a tabular GTF fi le which indicates the 
positions of the transcripts along a  reference genome  . Reference 
genomes currently exist for many model and nonmodel organ-
isms, and are available as FASTA fi les ( see   Note    13  ). In cases 
where a  reference genome   is available but not a reference tran-
scriptome, it is possible to assemble it ab initio using reads 
mapped to a  reference genome   [ 56 ]. In cases where the genome 
of an organism has not been  sequenced  , it is possible to assem-
ble a transcriptome de novo from bulk RNA-seq data [ 57 ].   

   7.    As a general rule, it is implicit that the names of fi les in the 
commands specifi ed here must include the full path to their 
location on the server or be available in the user’s current 
working directory.   

   8.    SAM is an abbreviation for “ Sequence   Alignment Map” for-
mat. It is one of many standard formats in which commonly 
used genomics software output their results. It is a human 
readable tab-delimited text format, each line of which corre-
sponds to the alignment of a single read. The alignment line 
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has 11 mandatory fi elds for important  alignment   information 
such as mapping position and mapping quality score, and a 
number of optional fi elds. The BAM format is a compressed 
version of the SAM format that is not directly human readable 
but can be effi ciently read using programs like samtools 
(  https://samtools.github.io    ), a suite of widely used tools for 
reading and manipulating SAM/BAM fi les. Full details of the 
SAM/BAM format are specifi ed here,   https://samtools.
github.io/hts-specs/SAMv1.pdf    .   

   9.    RNA-SeQC [ 58 ] is a single java program built on the Picard 
API, which computes a series of quality control metrics for 
RNA-seq data using the BAM fi les as input, and outputs a 
series of HTML reports and tab delimited text fi les summariz-
ing QC metrics. It can be downloaded from,   https://www.
broadinstitute.org/cancer/cga/rna-seqc    . The RSeQC pack-
age [ 59 ] provides a number of useful scripts written in the 
python language that use the alignment BAM fi les as input to 
perform various individual tasks like calculating  sequence   
quality, GC bias, and coverage uniformity. It can be down-
loaded from   http://rseqc.sourceforge.net    .   

   10.    To visualize multiple sample alignments using minimal com-
puter memory, convert the BAM fi les to the tiled data fi le 
(TDF) format, which summarizes the pileup of read counts 
along the genome. Instructions to convert BAM fi les to TDF 
format are provided in the IGV documentation,   https://
www.broadinstitute.org/igv/    .   

   11.    Alternative commonly used tools to perform transcript/gene 
quantifi cation from  reads   aligned to a reference transcriptome 
include RNA-seq by Expectation Maximization (RSEM) [ 60 ] 
and Cuffl inks [ 37 ].   

   12.    Kallisto is a recently published program, and is based on the 
idea of “pseudoalignment,” wherein every read is queried for 
its compatibility with targets along the transcriptome without 
the need for an exact alignment. As demonstrated in Bray 
et al. [ 40 ] “pseudoalignment” not only computationally out-
performs existing tools, but is also more robust to sequencing 
errors compared to techniques that involve exact alignment.   

   13.    FASTA fi les use a standard text-based format for representing 
nucleotide  sequences   or protein sequences. The format also 
allows for  sequence   names and comments (meta-data) to pre-
cede the actual sequences as “headers.” FASTA is a simple 
format, which makes it easy for most  bioinformatics   tools and 
programming languages to manipulate and parse sequences. 
More information can be found at   https://en.wikipedia.org/
wiki/FASTA_format    .   

Single-Cell RNA Sequencing of Human T Cells



234

   14.    Here we used the Hg19 transcriptome (UCSC) reference 
annotation. The metadata fi les are available on request to the 
authors of the manuscript.   

   15.    Because of differences in overall sequencing depth between 
samples and the difference in transcript lengths, the raw read 
counts of gene  i  in cell  j  C ij  do not necessarily refl ect the 
abundance of transcripts of gene  i  in cell  j . It is common prac-
tice therefore to normalize the read counts, and multiple 
approaches exist. Here we use transcripts-per-million TPM ij , 
which is the expected number of transcripts of gene  i  in cell  j  
per million transcripts, given the relative length of gene  i  and 
the abundances of all the other genes in cell  j . As the name 
suggests, the  TPM   values for all the genes within a given cell 
sum to 10 6 . Kallisto automatically provides a column of calcu-
lated TPM values in the  abundance.tsv  fi le.   

   16.    In R, these can be accomplished by repetitively using the  read.
table  command, which reads individual tsv fi les as a vector, and 
applying the  cbind  command on these vectors to bind them 
into a matrix or a R data frame. The resulting matrix should 
have the genes as rows and individual single-cell samples as 
columns.   

   17.    Barplot for visualizing  library   properties and genes. The fol-
lowing code can be copied and run in the console window in 
RStudio. This will make the function  barplot_tcell  available to 
use. Note that sentences preceded by “#” are treated as com-
ments and not executed by R,

      barplot_tcell  =  function(x = NULL, id = NULL, name = NULL){  
     #Inputs:  
          # x  =  numeric vector  
     # id  =  factor, indicating sample ids with the same length and order as x  
     # name  =  string, y-axis label  
     #Outputs:  
          # Bar plot  
     df  =  data.frame(Value = as.numeric(x), id  =  as.character(id))  
     means.sem  =  ddply(df, c("id"), summarise, mean = mean(Value), 
sem = sd(Value))  
     means.sem < -    transform    (means.sem, lower = mean-sem, upper = mean + sem)  
     print(ggplot(means.sem, aes(x = id, y = mean, fi ll = factor(id)))  +  
geom_bar(stat = "identity", color = "black") +  
        geom_errorbar(aes(ymax = upper,ymin = lower), position = position_
dodge(0.9), data = means.sem, width = 0.3) +  
        theme(axis.text.x  =  element_text(angle  =  45, hjust  =  1))  +
  xlab("Sample")  +  ylab(name)  +  theme_bw())  
  }  

        18.    The Coeffi cient of Variation (CV) is a measure of variability of 
the data and is defi ned as the ratio of the standard deviation by 
the mean.   
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   19.    Scatter plot for visualizing PCA projections of cells. The fol-
lowing code can be copied and run in the R  terminal  . This will 
make the function  scatter_plot  available to use. Note that sen-
tences preceded by “#” are treated as comments and not exe-
cuted by R.

      scatter_plot  =  function(X = NULL, id = NULL, axis.labels = c("PC1","PC2")){  
  #Inputs:  
  # X – Any matrix with dimensions (cells X features. Here the features 
are the PCA scores or the tSNE coordinates  
  # id -  =  factor, indicating sample ids with the same length and order 
as the number of rows in X  
  # Axis labels  =  x- and y-axis labels for the plot  
  #Output:  
  # Barplot  
  df  =  as.data.frame(X)  
  colnames(df)  =  c("x","y")  
  df$sample  =  substr(id,5,6)  
  df$type  =  substr(id,1,3)  
  p  =  ggplot(df, aes(x,y))  +  geom_point(aes(shape = sample, 
color = factor(type)), size = 4)  +  scale_color_manual(values = c("red", 
"blue"), name = "Cell Type")  +  ylab(axis.labels[2])  +  xlab(axis.labels[1])  
  p < - p  +  theme(axis.title.x  =  element_text(face = "bold", colour = "#990000", 
size = 16), axis.text.x  =  element_text(angle = 0, vjust = 0.5, size = 12))  
  p < - p + theme(axis.   title    .y  =  element_text(face = "bold", colour = "#990000", 
size = 16), axis.text.y  =  element_text(angle = 0, vjust = 0.5, size = 12))  
  p < - p  +  theme(plot.title  =  element_text(size = 12, face = "bold"))  +  theme_
bw()  
  print(p)  
  }  

        20.    Barplot for visualizing genes that drive PCs. The following 
code can be copied and run in the R terminal, and will make 
the function  barplot_loadings  available to use. Note that sen-
tences preceded by “#” are treated as comments and not exe-
cuted by R.

      barplot_loadings  =  function(X = pca.loadings,pc.use = 1, num.genes = 8){  
  #Inputs :  
  # X  =  matrix (genes by PCs) of PCA loadings output by prcomp  
  # pc.use  =  The PC for which loadings are desired  
  # num.genes  =  The number of top + ve and –ve genes to plot  
  #Output :  
  # Barplot  
  ord  =  order(X[,pc.use]); vals  =  X[ord,pc.use]  
  genes.select  =  c(1:num.genes, (nrow(X)-num.genes):nrow(X))  
  vals  =  vals[genes.select];  
  names(vals)  =  rownames(X)[ord][genes.select];  
  df  =  data.frame(loadings  =  vals, genes = factor(names(vals), lev-
els = names(vals)))  
  print(   ggplot    (df, aes(x = genes, y = loadings))  +  geom_bar(position = "iden-
tity", stat = "identity", color = "black",fi ll = "blue") + +theme_bw() +  
  theme(axis.text.x  =  element_text(angle  =  45, hjust  =  1))  +  xlab("Gene")  +  ylab
(paste0("PC",pc.use," loadings")))  
  }  
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    1.    Lever M, Maini PK, van der Merwe PA et al 
(2014) Phenotypic models of T cell activation. 
Nat Rev Immnunol 14(9):619–629. 
doi:  10.1038/nri3728      

   2.    Yui MA, Rothenberg EV (2014) 
Developmental gene networks: a triathlon on 
the course to T cell identity. Nat Rev Immnunol 
14(8):529–545. doi:  10.1038/nri3702      

        21.    Invoking SCDE for differential expression analysis. The fol-
lowing code can be copied and run in the R terminal, and will 
make the wrapper function  scde_test  available to use. The fol-
lowing command can be copied and run in the R terminal, 
and will make the function  scatter_   plot    available to the user:

      scde_test  =  function(C = NULL, grp1 = NULL, grp2 = NULL, min.fold = 3){  
  #Inputs:  
  #C – Counts matrix (genes x cells)  
  #grp1, grp2 – a character string indicating the sample names (e.g., 
CD4.NA, CD4.EM) that can be used to extract relevant cells.  
  #min.fold – minimum log-fold change between the two samples for a 
marker to be considered for the differential expression test (Default 
value 3)  
  #Output:  
  # Table showing differentially expressed genes, their inferred log-fold 
changes and statistical score.  
  cells.1  =  grep(grp1,colnames(C),value = TRUE);  
  cells.2  =  grep(grp2,colnames(C),value = TRUE);  
  sg  =  factor(c(rep(grp1,length(cells.1)), rep(grp2, length(cells.2))), 
levels = c(grp1,grp2))  
  names(sg)  =  c(   cells    .1, cells.2);  
  err.model  =  scde.error.models(counts = round(C[,c(cells.1,cells.2)]), 
groups = sg, n.cores = 8, verbose = 1);  
  valid.cells  =  err.model$corr.a  >  0  
  err.model  =  err.model[valid.cells,];  
  prior < - scde.expression.prior(models = err.model, 
counts = round(C[,valid.cells]), show.plot = F)  
  diff.exp  =  scde.expression.difference(err.model, 
round(C[,valid.cells]), prior, groups  =  sg[valid.cells], 
n.randomizations  =  100, n.cores  =  8, verbose  =  1)  
  diff.exp < - subset(diff.exp, ((lb  >  0 & ub  >  0) | (lb  <  0 & ub  <  0)) & 
abs(mle)  >  min.fold)  
  return(diff.exp[,c("mle","Z")])}  
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