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SUMMARY
Classification and characterization of neuronal types are critical for understanding their function and
dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological,
morphological, and molecular features, but aligning such datasets has been challenging. Here, we present
a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually
evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcrip-
tomic data from subsets and use these measurements to align the functional classification to publicly avail-
ablemorphological and transcriptomic datasets.We create an online database that allows users to browse or
download the data and to classify RGCs from their light responses using a machine learning algorithm. This
work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the
brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
INTRODUCTION

A major goal in biology is the establishment of a comprehensive

atlas of cell types.Many large-scale efforts are underway to clas-

sify cells in different tissues (BRAIN Initiative Cell Census

Network, 2021; Hodge et al., 2019; Regev et al., 2017; Wilbrey-

Clark et al., 2020; Yuste et al., 2020). In the central nervous sys-

tem (CNS), classification efforts have reliedmainly on three types

of information: functional, morphological, and molecular. Func-

tional classification involves the physiological properties of neu-

rons, typically measured by electrophysiological recordings.

Morphological classification uses the dendritic and axonal struc-

tures of neurons, measured by light or electron microscopic (EM)

methods. Molecular classification was initially based on immu-

nohistochemical or in situ hybridization, but has more recently
This is an open access article under the CC BY-N
relied on gene expression patterns (transcriptomes) assessed

by high-throughput single-cell RNA sequencing and spatial

transcriptomics (Close et al., 2021; Yuste et al., 2020). It has

become increasingly clear that different classification methods

offer complementary information and that a comprehensive

classification of cell types needs to unify all three modalities

(BRAIN Initiative Cell Census Network, 2021; Scala et al., 2020;

Zeng and Sanes, 2017).

The mammalian retina is especially well suited to provide a

template for integrating functional, morphological, and molecu-

lar classification for three reasons. First, many retinal cell types

exhibit regular spacing, called a mosaic, which ensures smooth

and complete sampling of visual space (Bleckert et al., 2014; Kay

et al., 2012; Reese and Keeley, 2015; Rockhill et al., 2000;

Rousso et al., 2016; Wässle et al., 1981). This property means
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that experimentalists can sample from a sub-region of the retina

and be assured that they will find cells of each type. Moreover,

mosaics establish an independent metric to assess whether a

set of cells comprises an authentic type. Second, because the

retina responds to light ex vivo, functional measurements of

retinal neurons include both intrinsic biophysical properties

and response properties to visual stimuli. Light responses

depend on the entire upstream synaptic network, creating a

rich dataset. Finally, our knowledge of the morphology of retinal

neurons, particularly in themouse, is unparalleled among tissues

of the mammalian CNS (Bae et al., 2018; Hoon et al., 2014;

Sanes and Masland, 2015).

Here, we present a unified functional, morphological, and ge-

netic classification of mouse retinal ganglion cells (RGCs), the

output cells of the retina. We collected detailed functional data

from 1,859 RGCs and also obtained morphological or transcrip-

tomic data from subsets of these cells. We then used these

doubly characterized cells to align the functional classification

with publicly available large-scale datasets of RGC morphology

(381 RGCs reconstructed from EM sections; Bae et al., 2018)

and gene expression (35,699 single-RGC transcriptomes; Tran

et al., 2019), thereby generating a unified atlas. Comparison of

the three datasets reveals that close relationships between cell

types identified by one criterion sometimes predicts close rela-

tionships by other criteria.

Finally, we provide two tools that make the data useful to the

community and suggest formats for crossmodal analyses of

other populations. First, we devised amachine learning classifier

that allows researchers to infer an RGC’s functional type from a

small and standardized set of spike measurements. Second, we

curated the data in the form of a continuously updated, open-ac-

cess library (rgctypes.org) where researchers can browse

single-cell- or cell-type-level data and download functional,

morphological, and transcriptomic datasets.

RESULTS

RGCs have traditionally been classified by physiological,

morphological, and molecular criteria. Recent studies have

used high-throughput methods to categorize mouse RGCs at

large scale using all three criteria: optical imaging of visually

evoked responses (Baden et al., 2016); reconstruction from se-

rial EM sections (Bae et al., 2018); and transcriptomic analysis

of single RGCs (Tran et al., 2019). Our goal was to unify these di-

mensions into a single schema that was as complete as possible

in representing all known RGC types in the mouse. We made our

measurements in one cell at a time, allowing us to perform online

functional classification followed by recovery of the same cells

for morphological or transcriptomic measurements.

Functional classification of RGCs
We began with physiological characterization, using a rapid and

standardized light stimulus protocol for functional measure-

ments. Experiments were performed in dark-adapted ex vivo

preparations of the mouse retina where capacitive spikes from

RGCs were recorded with cell-attached electrodes. Standard

light stimuli presented to every RGC were rod-saturating (�200

isomerizations/rod/s) spots (l = 450 nm) from darkness with di-
2 Cell Reports 40, 111040, July 12, 2022
ameters ranging from 30 to 1,200 mm, centered on the receptive

field (RF) of each individual cell. We presented additional stimuli

to subsets of RGCs to test for specific forms of feature selectivity.

Moving bars were used to test for direction selectivity (DS),

flashed bars, and drifting gratings for orientation selectivity

(OS), and contrast series for contrast suppression (Figure S1).

Background luminance values of 1,000 R*/rod/s were used for

driftinggratings, andcontrast series experimentswerepresented

for less than 6 min per cell; response changes for subsequent

measurements from darkness were negligible (data not shown).

Our standard stimulus paradigm differed from the full-field

‘‘checkerboard’’ white noise and ‘‘chirp’’ stimuli used in previous

studies (Baden et al., 2016; Farrow and Masland, 2011; Jouty

et al., 2018). Three considerations drove our stimulus choice.

First, maintenance of a consistent light-adaptation state was

essential becausemany aspects of RGC light responses change

with luminance and with light adaptation (Tikidji-Hamburyan

et al., 2015;Wienbar and Schwartz, 2018). High background light

is unavoidable in functional two-photon imaging experiments

due to excitation from the laser, limiting the period of stable light

responses, especially in preparations lacking the retinal pigment

epithelium (Euler et al., 2019). The use of patch electrodes al-

lowed us to make measurements in darkness. Second, precise

localization of stimuli with respect to the RF center cannot be

achieved with full-field stimuli but turned out to be critical as

shown below. Indeed, many RGCs that respond well to small

stimuli in their RF center fail to respond to any full-field stimulus

(Jacoby and Schwartz, 2017; Zhang et al., 2012). Finally, to facil-

itate standardization in the field, we wanted our stimulus to be

simple and rapid and to correspond to those commonly used

by others. For example, many previous studies have used RF-

centered spots of different sizes, enabling retrospective compar-

isons (Jacoby and Schwartz, 2017; Johnson et al., 2018; Krieger

et al., 2017; Marco et al., 2013; Rousso et al., 2016).

We assigned RGCs to 42 functional types by hand based on

our iteratively updated understanding of their response patterns.

Thirty-four of these types were assigned based only on the re-

sponses to flashed spots, while the additional eight types were

subdivided by direction or orientation preference. Thus, while

our classification is not free from human bias, two pieces of ev-

idence, detailed below, strengthen our confidence that it repre-

sents an accurate typology: (1) cells that we placed in the

same functional group typically had strong morphological and

molecular similarities and (2) a cross-validated algorithm suc-

cessfully classified functional RGC types, including those with

‘‘external’’ classification data on which the algorithm was never

trained. We organized the RGC types into eight functional

groups: ON sustained, OFF sustained, ON transient, OFF tran-

sient, ON OS, DS, ON-OFF small RF, and suppressed-by-

contrast (SbC)/other. These groups were chosen as a starting

point based on previous work; a quantitative measure of func-

tional relatedness is presented below.

In most recordings (1,246/1,859 cells), retinal orientation and

cell locations were noted to determine whether classification

varied based on retinal position. Response patterns within

some RGC types have been shown to vary as a function of retinal

position in photopic conditions (Joesch and Meister, 2016; War-

wick et al., 2018), likely because of a pronounced cone opsin

http://rgctypes.org
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gradient along the dorsoventral axis (Nadal-Nicolás et al., 2020).

In our dark-adapted preparation, however, where much of the

light response was initiated in rods (Grimes et al., 2014),

response variation across retinal position wasminimal.We found

no significant relationship between retinal position and any of the

six response metrics we tested (see STAR Methods). The re-

sponses of OFF transient alpha RGCs, which had previously

been shown to depend on dorsoventral position in high lumi-

nance (Warwick et al., 2018) showed no position dependence

under our conditions (data not shown).

Most functional RGC types were relatively uniformly distrib-

uted across retinal locations (Figure S2). A shuffle test revealed

two RGC types with significant positional biases (Table S1).

F-mini-ON RGCs were found in greater proportion in the ventral

retina; however, we specifically targeted them in that region

based on a previous report of their prevalence there in a trans-

genic line (Rousso et al., 2016). PixON RGCs were found in

greater proportion in the dorsal retina which, to the best of our

knowledge, does not represent sampling bias and has not

been reported previously. Several other RGC position distribu-

tions showed trending biases that failed to meet the Bonferroni

correction for multiple comparisons. These include the known

prevalence of ON alpha RGCs in the temporal retina (Bleckert

et al., 2014), and the previously unreported prevalence of UHD

RGCs in the nasal retina.

Data from37RGC types are presented in threeways in Figure 1

(only 37 of the 42 types are illustrated because DS RGCs with

different directional preferences did not differ from each other

in their responses to light spots). We first measured the response

polarity and kinetics of light responses with a 200 mm light spot

centered on the RF (marked ‘‘a’’ in the ON alpha RGC panel).

This allowed us to assign cells according to response polarity

(ON, OFF, ON-OFF, or SbC) and as having sustained or transient

responses to luminance changes. Second, to assess how each

RGC type’s response varied with stimulus size, we measured

the total ON and OFF spike responses for spots of 12 sizes

from well below the RF center diameter of the smallest RGC

(30 mm) to a size that reached the far RF surround (1,200 mm)

(marked ‘‘b’’ in the ON alpha RGC panel). This information was

critical in separatingmany types. For example, despite similar re-

sponses to the 200 mm spots, ON-OFF DS, HD1, HD2, and UHD

all had different response profiles of their ON andOFF responses

across spot size. For someRGC types, even theoverall polarity of

the light response depended on spot size. For example, HD2

RGCsareON-OFF for small spots andON for large spots (Jacoby

and Schwartz, 2017), and the ON small OFF large RGC switches

polarity entirely with spot size as its name suggests. Finally, we

combined information about response amplitude and kinetics

as a function of spot size into a single plot using a heatmap of

firing rate over time for each spot size (marked ‘‘c’’ in theONalpha

RGC panel). Functional heatmaps of the variability in these re-

sponses within each functional group are presented in Figure S3

and distributions of six common response metrics for each RGC

type are shown in Figure S4.

Functional relatedness of RGC types
To visualize the relationships between functional RGC types, we

used Uniform Manifold Approximation and Projection (UMAP)
(Becht et al., 2018; McInnes et al., 2018) (Figure 2). The UMAP al-

gorithm assigned each cell to a point in 2D space based only on its

response to spots of varying size (see data in Figure 1) with closely

related cells projecting to nearby locations in this space. We did

not include the moving bar or drifting gratings responses as input

to the UMAP algorithm since they were not measured for every

RGC. Therefore, DS RGCs with different direction preferences

andOSRGCswith different orientation preferenceswere grouped

together in this representation. Most RGC types formed clear

clusters in UMAP space with a few exceptions, typically for types

that were sampled sparsely in our dataset (Figure 2A).

To assess the clustering of each of our defined functional

types in this UMAP space, we subsequently clustered points in

this 2D space with DBSCAN (Ester et al., 1996). F scores, which

measure the overlap between our 34 type labels and the 33 clus-

ters identified by DBSCAN are shown in Figure 2B. These scores

represent the degree of functional similarity (for this stimulus

paradigm) within our assigned types relative to the differences

between types. The types with lowest F scores (10 types

<0.75) likely contain the majority of our labeling errors. There

are also RGC types in this group (e.g., M1 and ON bursty

RGCs) for which additional lines of evidence suggest that our la-

bels are correct (see morphological and molecular data in Fig-

ures 4 and 5), but for which the average spike rates for flashed

spots alone are not sufficient for highly reliable functional classi-

fication. The average F score, weighted by the number of cells of

each type in the dataset, was 0.89.

Automated functional classification
We implemented amachine learning classifier to assign RGCs to

types based on a feature set comprising spike responses to

spots of varying size. Since the responses to moving bars and

drifting gratings were not included in the feature set, we

collapsed DS and OS cells across direction and orientation,

respectively. Our dataset of 1,859 RGCs across 34 types was

split into a training set (n = 883), a calibration set (n = 500), and

a test set for model evaluation (n = 476). Details of data split

and classifier architecture are provided in STAR Methods.

Following training, the performance of the classifier was evalu-

ated on the test set (Figure 3). For each cell, the classifier outputs

the probability of membership in each RGC type. Thus, the algo-

rithm provides both a ‘‘best guess’’ and a confidence rating for

each prediction. An advantage of probabilistic scoring is that the

classifier predictions can easily be updated to include comple-

mentary sources of information (e.g., previous probabilities based

onstratificationdepth in the innerplexiform layer [IPL]or labeling in

a transgenic line) viaBayes’ rule (MacKayandMac, 2003).Without

thresholding the probability scores, classification accuracy was

59% overall (with chance being 1/34 = 2.9%; Figures 3B and

3D). The correct RGC type was among the top three choices of

the classifier 75% of the time (Figure 3A, inset), suggesting that

additional information (functional, structural, or molecular), could

be used to refine its predictions.

To gain somemeasure of the degree to which RGC types clas-

sified by flashed spots correspond to those identified by other

criteria, we used five types of ‘‘external’’ validation data that

were not available to the classifier: (1) an image of the cell’s

morphology, (2) fluorescent labeling in one of several transgenic
Cell Reports 40, 111040, July 12, 2022 3



Figure 1. Functional diversity of mouse RGCs

Each panel (separated by purple lines) contains three graphs showing the light response of an RGC type to flashed spots of light (200R*/rod/s) from darkness. The

top left graph (marked ‘‘c’’ in ON alpha panel) is a heatmap of average firing rate over time (x axis) for spots from 30–1,200 mm (y axis). Dashed lines show the time

of spot onset and offset. The top right graph (marked ‘‘b’’ in the ON alpha panel) shows the total spike count during flash onset (cyan) and offset (black) for each

spot size. The solid lines indicate mean across cells and the shaded regions indicate standard deviation (SD). The bottom graph (marked ‘‘a’’ in the ON alpha

panel) shows peristimulus time histogram plots averaging the response of each cell type to 200 mm spots, indicated in upper plots by red dotted lines. Scale bars

in the upper left region are shared across all graphs. Separate scale bars for the y axis of the PSTH plots are provided within each boxed group of cells and apply

within that box. Abbreviations for cell types: sus, sustained; tr, transient; med, medium; EW, Eyewire (named based on the Eyewire museum); OS, orientation-

selective; h, horizontal; v, vertical; DS, direction-selective; SmRF, small receptive field; MeRF, medium receptive field; LgRF, large receptive field; HD, high

definition; UHD, ultrahigh definition; LED, local edge detector; (b,s)SbC, (bursty, sustained) suppressed-by-contrast.

4 Cell Reports 40, 111040, July 12, 2022
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Figure 2. Visualization of functional relation-

ships among RGCs

(A) UMAP projection of 1,859 RGCs labeled by as-

signed functional type. Insets show magnified views

of boxed regions.

(B) F score for each RGC type, the harmonic mean of

the precision (fraction of a given cluster representing

a single-labeled type) and recall (fraction of our

labeled cells of a given type in a single cluster) of its

identification within a single DBSCAN cluster.
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lines in which small subsets of RGCs are labeled (see STAR

Methods), (3) synaptic currents in voltage-clamp whose profile

match those in our published work on particular RGC types

(Cooler and Schwartz, 2020; Jacoby and Schwartz, 2017; Ja-

coby et al., 2015; Mani and Schwartz, 2017; Nath and Schwartz,

2016, 2017), (4) large soma size noted at the time of recording

(for the three alpha RGC types), and (5) DS or OS as measured

by moving bars and/or drifting gratings (see Figure S1). A total

of 634 of the RGCs in our dataset (34%) were validated by one

or more of these external data types (Table S2). Classifier perfor-

mance was slightly better for the validated cells in our test set

(65% correct, n = 221 cells) than for the unvalidated cells (59%

correct, n = 255 cells).

Classification accuracy varied widely across RGC types, with

9 types having 0% sensitivity and the other 24 having a median
accuracy of 71% (Figure 3B). Overall accu-

racy scaled linearly with the unclassified

fraction as we increased the classification

margin, i.e., minimum probability score at

which cells are assigned a type label (Fig-

ure 3A). Cells with maximal class probabil-

ities below the classification margin are

considered ‘‘unclassified.’’ Increasing the

classification margin to 0.205 achieved an

accuracy of 80%across thewhole dataset,

with 49% of cells unclassified (Figure 3E).

Themost significant limitation of our classi-

fier was the size of the training set (Fig-

ure 3C). Thus, we expect classifier perfor-

mance to improve steadily as we continue

to collect more data, particularly from rare

RGC types. Updated results, newly trained

versions, and tutorials for formatting data

and running it through the classifier will

continue to be made available at

rgctypes.org.

Alignment of functional and
morphological classification
After we recorded visually evoked re-

sponses from RGCs, we filled some of

them with either Alexa Fluor 488 for live im-

aging or with Neurobiotin for post-hoc im-

aging. A total of 136 of these images could

be effectively computationally flattened

and registered to the choline acetyltrans-
ferase (ChAT) bands; ChAT is an established marker for the den-

drites of starburst amacrine cells, which stratify in stereotypical,

narrow strata (S€umb€ul et al., 2014). This alignment allowed quan-

titative measurements of en face morphology and stratification

patterns within the IPL (Figure 4).

Stratification profiles for each functionally defined RGC type

are shown in Figure 4A along with those of our suggested match

in the Eyewire museum (Bae et al., 2018). Stratification similarity

between each of our types and each type in the Eyewiremuseum

is shown as cosine overlap in Figure 4C. While stratification pro-

file was an important factor in matching our types to those in the

Eyewire museum, it was not the only factor. Along with stratifica-

tion location and thickness, Figure 4B also depicts the dendritic

field diameter and density of each stratum as well as the soma

size for each RGC type, as measured en face. Example traced
Cell Reports 40, 111040, July 12, 2022 5
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Figure 3. Functional classification from spot responses

(A) Overall model accuracy (y axis) as a function of the fraction of unclassified cells in the test cells (x axis), which increases with the classification margin. The

dashed line represents the expected accuracy of a random classifier. Inset: fraction of instances when the correct choice was present among the top 1–10

probability scores in the classifier output.

(B) Fraction of test cells of each type classified correctly versus the number of cells of that type in the training set. Histogram at the right shows the distribution of

classifier accuracy across RGC types.

(C) Accuracy of classification for each RGC type versus its F score from (B).

(D) Confusion matrix (row normalized) for the classifier with no explicit classification margin set. Dotted lines separate RGC groups as in Figure 2.

(E) Confusion matrix (row normalized) for the classifier with a classification margin of 0.205. The fraction of unclassified cells of each type is shown in the first

column. Remaining entries in the matrix only consider classified cells.
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images of each type are shown in Figure 4D, and a supplemental

dataset contains all of the traced cells in en face and side views

along with those of our suggested Eyewirematch (see the key re-

sources table in the STAR Methods).

We combined all of our morphological measurements and

used UMAP to project the data for all 136 cells into 2D. While

this dataset was not large enough for clustering into �40 types
6 Cell Reports 40, 111040, July 12, 2022
to be feasible, we measured distances in this space to capture

the morphological similarity among cells that we independently

grouped together by their light responses (Figure S5). For 30 of

the 32 types represented in this dataset (those with 2 or more

members), the mean pairwise morphological distance for cells

of the same functional type was less than the mean pairwise

morphological distance in the entire dataset. The compactness



Figure 4. Morphological diversity of mouse RGCs

(A) Stratification profile of each RGC type along the depth of the IPL from its outer (left) to inner (right) limits. Dashed lines indicate ChAT bands. Profiles include

individual cells (thin gray lines), the mean (thick black line), and SD (gray shading), as well as the presumed matching type(s) in the Eyewire museum (shades of

red).

(legend continued on next page)

Cell Reports 40, 111040, July 12, 2022 7

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
of this morphological representation for RGCs of the same func-

tional type varied by RGC type; 10 types were more than 10-fold

more compact in this space than the mean.

Alignment of functional and transcriptomic
classification
Recent large-scale investigations of single-cell transcriptomes in

the retina have identified �45 molecularly distinct types of post-

natal mouse RGCs, comparable with the number of RGC types

identified through physiological and morphological analyses

(Rheaume et al., 2018; Tran et al., 2019). While some clusters

could be matched 1:1 with previously known types based on

well-established molecular markers (Sanes and Masland,

2015), approximately 40% of clusters remained unmatched.

Moreover, these methods used dissociated tissue, precluding

direct harmonization of gene expression with function.

To relate functional to molecular criteria, we used a variant of

the Patch-seq technique (Cadwell et al., 2016) in which RGCs

were first classified based on their cell-attached light responses

and then the cytoplasm was collected for RNA sequencing by

aspirating the soma with a clean pipette (see STAR Methods).

We obtained 103 high-quality single-RGC transcriptomes

(>2,000 genes/cell). We used gradient boosted decision trees

(Chen and Guestrin, 2016) to match each of our transcriptomes

to a cluster in the published adult RGC dataset (Tran et al., 2019)

(see STAR Methods). Many of our functionally identified cells

matched the transcriptomic clusters with high concordance (Fig-

ure 5A), providing putative matches to previously unknown clus-

ters. For example, the three types of ON DS sus cells all aligned

to C10 (a previously uncharacterized cluster), OFF tr SmRF

aligned with C21, corresponding to T-RGC S2 (Liu et al., 2018)

andONdelayed (Mani and Schwartz, 2017), previously observed

in CCK-ires-Cre mice (Jacoby and Schwartz, 2018; Tien et al.,

2015) aligned with a cluster (C14), which was distinguished by

the expression of the neuropeptide Cck.

T5-RGCs share a functional and morphological profile
Alignment of our physiologically characterized types to tran-

scriptomically defined RGC groups (Tran et al., 2019) enables

a deeper analysis of the relationships between gene expression

of RGCs and their function and morphology. One example is

provided by the gene Tusc5 (also known as Trarg1), which we

identified as a key marker of a group of nine mostly unidentified

transcriptomic clusters termed T5 RGCs (Tran et al., 2019). Most

of these RGCs are labeled by the transgene TYW3, which ex-

hibits insertion-site-dependent expression (Laboulaye et al.,

2018).

Transcriptomic clusters corresponding to the T5 RGCs are

labeled by green arrowheads in Figure 5A. Six of these clusters

are matched to RGC types in our dataset, so we examined

whether these types share functional or morphological charac-
(B) Summary plot of the morphology of each RGC type. Colored rectangles depic

IPL (vertical scale) and the equivalent diameter (according to its diameter) of the

density. Somas are drawn as circles relative to their diameter on a separate hori

(C) Mean overlap between the stratification profile of each measured cell and ea

(D) Gallery of en face skeleton example images of each RGC type colored by IPL d

be found at rgctypes.org.
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teristics. All six T5 RGC types lie at the intersection of two

functional characteristics, transience and strong surround sup-

pression, and onemorphological characteristic, stratification be-

tween the ChAT bands (Figure 5B). Other subclasses of RGCs

can be queried in this way, with increasing power as additional

data are added to rgctypes.org.

The question of completeness
One way to estimate the completeness of our classification is to

record nearly all the RGCs in a small region of the retina and

count how many can be assigned to one of our types. We per-

formed such an experiment and then stained the tissue with

the pan-RGC marker gamma-synuclein (Surgucheva et al.,

2008) to confirmRGC identity post-hoc (Figure S6). We recorded

55 spiking cells and 25 cells for which we could not elicit spikes

with our test stimuli. Of the 55 spiking cells, 48 were successfully

identified in the fixed tissue. In the live tissuewe had labeled 42 of

these cells as RGCs matching one of our types and 6 as spiking

amacrine cells. All 48 of these identifications were verified by the

gamma-synuclein staining (42/42 gamma-synuclein-positive

RGCs and 6/6 gamma-synuclein-negative spiking amacrine

cells).

Of the 25 cells for which we could not elicit spikes, 22 were

identified in the fixed tissue: 10 were gamma-synuclein negative,

presumably non-spiking amacrine cells, and 12 were gamma-

synuclein positive, presumably RGCs that we failed to identify.

Thus, we identified 78% (42/54) of the putative RGCs in this sam-

ple. While somewhat less than our estimate of 89% coverage of

the types in the Eyewire museum, it is a conservative estimate

because some of the non-responding RGCs were likely

damaged during removal of the inner limiting membrane or by

the recording procedure and did not spike (e.g., because the

axon initial segment was destroyed) but survived enough struc-

turally for gamma-synuclein staining.

Relatedness of functional, morphological, and
transcriptomic space
The main goal of our study was to directly relate physiological,

structural, and molecular definitions of cell type. Our suggested

alignments between these three modalities are shown in Fig-

ure 6A. Functional types are colored by their F scores from

Figure 3, and the data used to infer the alignment are shown in

Figures 4 and 5. With this alignment data in hand, we were

able to address an additional question: to what extent do rela-

tionships among types established in one modality (e.g., func-

tion) predict those in another modality (e.g., morphology)?

Importantly, this is not a test of the quality of our alignment be-

tween modalities. Functionally similar RGC types might differ

substantially in morphology and/or gene expression, and the de-

gree to which local neighborhoods are similar across modalities

might vary for each RGC type.
t the mean and full-width-at-half-maximum of each dendritic stratum within the

stratum in the plane of the IPL (horizontal scale). Stata are colored by arbor

zontal scale, as indicated.

ch template from the Eyewire museum as cosine similarity.

epth. Full galleries of all skeleton images and those in the Eyewire museum can

http://rgctypes.org
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To investigate the questions of crossmodality neighborhood

similarity, we constructed a UMAP embedding of the stratifica-

tion profiles of each cell in the Eyewire museum (Bae et al.,

2018) (Figure 6B) and another UMAP embedding of gene exp-

ression from the mouse RGC transcriptomic atlas (Figure 6C)

(replotted from Tran et al., 2019). Tomeasure neighborhood sim-

ilarity across the three UMAP spaces (the functional space from

Figure 2A and the stratification and gene expression spaces in

Figures 6B and 6C), we tested whether the nearest neighbors

in a reference modality were also grouped nearby in another

modality.

For each RGC type, we computed the fractional overlap

among the identities of its nearest neighbors in the reference

embedding to that in the other two embeddings. We repeated

this analysis for neighborhood sizes from 2 to 12 nearest

neighbors and grouped the results into the ‘‘local’’ and ‘‘global’’

neighborhoods. To establish statistical significance on this frac-

tional overlap measure, we used the bootstrap approach. We

randomly shuffled type identities in each of themaps and recom-

puted the fractional overlap. Repeating this process 1,000 times

yielded an empirical null distribution. Fractional overlap values

obtained from the real data are reported as Z scores relative to

this null distribution, with positive values indicating greater over-

lap in the real data than in the null distribution (Figures 6D–6F).

Overall, similarity between modalities was modest; crossmo-

dality overlap for many RGC types waswithin 1 SD of the null dis-

tribution (shaded regions in Figures 6D–6F). Several RGC types

did show strong local neighborhood similarity between functional

and morphological (IPL stratification) embeddings (Figure 6D),

and one type (OFF OS; 2aw; C5 and C9) showed a strong corre-

spondence between its local neighborhoods in stratification and

gene expression space. Global neighborhood alignments had

similar overall trends but a somewhat different set of RGCs

tended to be more crossmodally aligned globally than locally.

Integrated web-based RGC compendium
Finally, we created a resource so that labs around the world can

come to a consensus on the classification of mouse RGCs. To

that end, we have developed a website, rgctypes.org (Figure 7),

with a direct pipeline to our database of functional and morpho-

logical measurements. Following a curation step and type

assignment, every RGC recorded in the Schwartz lab will auto-

matically update to rgctypes.org. Other researchers are invited

to submit data for integration as well. Cells can also be reas-

signed to different types if evidence supports a different assign-

ment. Full datasets are available for download immediately,

regardless of publication status. We have also provided a down-

loadable version of our automated classifier and instructions on

how to prepare a data file to obtain a type prediction and confi-

dence score.
Figure 5. Matches between functional types and transcriptomic cluste

(A) Heatmap showing correspondence between functional types (rows) and tran

subsequent analyses are indicated by an ‘‘X.’’ Color scale indicates the numbe

matching procedure. Green arrowheads indicate T5 RGCs as described in Tran

(B) Venn diagram of RGC types, including onemorphological characteristic (stratifi

and surround suppression). Green text denotes cell types matched to transcripto

gene Tusc5/Trarg1 in Tran et al. (2019).
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DISCUSSION

Wepresent a resource of physiological, morphological, and tran-

scriptomic data aimed at establishing a comprehensive typology

of mouse RGCs. A summary of our classification and its align-

ment with previous RGC classifications is provided in Table

S3. As multi-modal neuronal classification efforts continue to

be a major focus across many labs (BRAIN Initiative Cell Census

Network, 2021), we first consider what lessons we have learned

from this approach in our dataset that might apply to other re-

gions of the CNS before discussing what our findings have re-

vealed about the retina.

RGCs have a distinct advantage for studies of typology since

they form mosaics to tile visual space. Several lines of evidence

have now converged on a number of types near 45 in the mouse

(Baden et al., 2016; Bae et al., 2018; Tran et al., 2019), and we

find 42 types with an estimated coverage of 89%. Each type

has functional characteristics that we used to distinguish it

from others (Figure 1) and, with few exceptions, these differ-

ences were captured by supervised dimensionality reduction

of the spike responses to a simple stimulus (Figure 2). Success

in clustering responses, however, does not automatically trans-

late into success for an automated classification algorithm (Fig-

ure 3). In clustering, there is typically no external ground truth

data to assess the validity of the clusters as cell types. We also

lacked an absolute ground truth, but we used external validation

data not available to our classifier to label one-third of our cells

(Table S2) and found performance to be similar (or slightly better)

than on our unvalidated type labels. When external validation

data are available, future studies of cell typology should report

the performance of a cross-validated classifier in addition to

measures of cluster separability.

As more studies employ multiple modalities, such as function,

morphology, and gene expression, to classify neurons, compar-

isons of the same cells between modalities will become more

frequent. Gene expression impacts both morphology and func-

tion, and stratification within the IPL is an important factor in

determining the synaptic inputs of RGCs. Thus, one might

have expected an even stronger correspondence between the

positions of RGC types across modalities (Figures 6D–6F). It is

worth noting that such an analysis inevitably simplifies across

the large possible space of each modality by dimensionality

reduction both at the level of feature selection (a single stimulus

type, IPL stratification alone for morphology, gene selection for

transcriptomics) and at the level of the UMAP algorithm (down

to two dimensions for each modality). For example, specific sin-

gle genes might be very important for IPL lamination (Krishnasw-

amy et al., 2015; Liu et al., 2018) yet might fail to group types in

transcriptomic space. The high dimensionality required to fully

specify a cell type in any single modality might mean that new
rs

scriptomic clusters reported in Tran et al. (2019) (columns). Matches used in

r of patch sequencing cells matched to each cluster. See STAR Methods for

et al. (2019).

cation between the ChAT bands) and two functional characteristics (transience

mic clusters identified as T5 RGCs, characterized by the specific expression of

http://rgctypes.org
http://rgctypes.org
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distance metrics will be needed to study crossmodal relation-

ships between cell types if such relationships turn out to be

important principles of brain architecture or development.

Method for functional classification
We recorded from RGCs one at a time, which allowed us to cen-

ter stimuli on the RF of each cell. This undeniably limits

throughput. On the other hand, when activities of many RGCs

are recorded simultaneously—for example, by calcium imaging

or with multielectrode arrays—it is not feasible to center stimuli

on individual RGCs, so these studies have used a combination

of full-field modulation, large moving objects or gratings, and

spatiotemporal white noise. These stimulus choices come with

a significant cost. Many RGC types, including some of the

most numerous types, respond poorly or not at all to full-field

stimuli or spatiotemporal white noise (Jacoby and Schwartz,

2017; Zhang et al., 2012). Other types respond both to small

(RF centered) and large stimuli, but basic response properties

depend on spot size. For example, the ON small OFF large

RGC would be classified as an OFF cell for full-field stimulation

but responds as an ON cell for small spots in its RF center. Sur-

round suppression differentially affects both the total spike count

and response kinetics inmost RGC types (Figure 1) (Wienbar and

Schwartz, 2018), providing information that we found necessary

to separate otherwise functionally similar types.

Comparisons with previously defined RGC types
Our 42 RGC types appear to include all 28 types previously iden-

tified functionally (referenced in Table S3 and at rgctypes.org) as

well as 14 types that have not, to our knowledge, been defined

previously. Remarkably, most of these types can be distin-

guished based on their response patterns to spots of varying

size. The total is close to previous estimates (Baden et al.,

2016; Bae et al., 2018; Rheaume et al., 2018; Tran et al., 2019),

supporting the view that mouse RGC classification is approach-

ing completion. Many of the previously unnamed types had

certainly been encountered in previous studies, but we list

them as such here based on our belief that they had not been

identified separately as distinct functional types (e.g., multiple

types had been grouped into ‘‘ON transient’’ and ‘‘OFF transient’’

categories). The types we named include several sets of func-

tionally similar RGCs (ON tr MeRF/ON tr SmRF/ON tr EW6t,

OFF tr MeRF/OFF tr SmRF, OFF med sus/OFF sus EW1no/

OFF sus EW3o), all of which match 1:1 to morphological types

and many to transcriptomic types.

Why did the retina evolve entire populations of RGCs that vary

only subtly in function? Of many possible answers, we believe
Figure 6. Correspondence between RGC relatedness in functional, mo

(A) UMAP embedding of RGCmorphology constructed from the stratification profi

magnification.

(B) UMAP embedding of RGC gene expression from Tran et al. (2019). Cluster la

(C) Alignments between the three classification schemes that we used for sub

classification schema.

(D) List of RGC types ranked by the z-normalized fractional overlap between func

expectation from the null distribution. Top: local neighborhood (2–4) neighbors. B

(E and F) Same as (D) but showing alignment between functional and morpholo

borhood for (E and F) is 2–3 neighbors and global neighborhood is 4–8 neighbor
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the most likely is that functionally similar types would reveal pro-

found differences under stimulus conditions beyond those in our

simple battery. A striking example is Eyewire type 25. This type is

abundant (5.8% of the population), and forms a convincing and

statistically validated dendritic mosaic (Bae et al., 2018), yet we

were unable to find its match in thousands of recordings. A nat-

ural hypothesis is that this RGC type does not respond to our

standard test stimuli, so it was consistently passed over.

Supporting this idea, the calcium responses for type 25 in the

Eyewire museum are weak (�1% DF/F with low signal-to-noise

ratio as opposed to some RGC types that reached 20% DF/F).

Similarly, we failed to find a clear ‘‘trigger feature’’ for several

RGC types (e.g., ON bursty, motion sensor, sSbC EW27). Re-

sponses of these cells to flashed spots were inconsistent. For

simplicity and reproducibility, our study omitted the vast space

of light stimuli that may have differentiated these cell types,

including high luminance, variations in color, and complex forms

of motion.

DS and OS RGCs represent a substantial fraction of the RGCs

in the mouse retina (14/42; 33% of types). We identified ON-OFF

DS RGCs preferring all four cardinal directions (dorsal, ventral,

nasal, temporal); ON DS sustained types preferring three

different directions, and one ON DS transient type encountered

infrequently and with a wide distribution of preferred directions

(Figure S7). While there is broad agreement that there are four

ON-OFF DS RGC types in the mouse, there is not as strong a

consensus about ON DS RGCs. Some studies have reported

three types (Estevez et al., 2013) while another reported four

(Sabbah et al., 2017). It remains unclear whether this discrep-

ancy is due to one of the ON DS RGC types being transient

and the other three being sustained. One study reported a func-

tionally andmorphologically distinct ON DS RGC that projects to

superior colliculus (SC) and not to the medial terminal nucleus

(MTN) or nucleus of the optic tract of the accessory optic system

(Gauvain and Murphy, 2015). This SC-projecting ON DS RGC

had transient responses and more balanced ON and OFF den-

dritic strata than the MTN-projecting types, consistent with

type 7o in the Eyewire museum. While the previous study on

these cells did not report the distribution of their preferred direc-

tions (Gauvain and Murphy, 2015), calcium responses for Eye-

wire type 7o consistently preferred a nearly nasal direction on

the retina (Bae et al., 2018). Our sample of ON DS sustained

RGCs had a distribution of preferred directions with three clus-

ters, separated by�120�, but the sparsely sampled ON DS tran-

sient RGCs had inconsistent direction preference (Figure S7),

and we have so far been unable to reconstruct its morphology.

Thus, we have provisionally assigned the ON DS trans RGC to
rphological, and transcriptomic space

les in the Eyewiremuseum (Bae et al., 2018). Inset shows boxed region at higher

bels removed for clarity.

sequent analysis. Lines connect putative corresponding RGC types in each

tional and stratification embeddings. Shaded region indicates 1 SD around the

ottom: global neighborhood (5–12 neighbors).

gical space (E) or morphological and gene expression space (F). Local neigh-

s.

http://rgctypes.org
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(A) Landing page for the HD1 RGC.

(B) Table of RGC types.

(C) Data download area.

(D) Expanded, interactive graph of HD1 RGC light responses.
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Eyewire type 7o, but it is one of thematches in whichwe have the

least confidence. A more focused study on ON DS RGCs will be

needed to resolve this final issue in the classification of DS RGC

types.

OS RGCs, described long ago in other species (Levick, 1967;

Maturana and Frenk, 1963), were only recently identified in the

mouse (Nath and Schwartz, 2016, 2017). OFF OS RGCs were

separated into horizontal- and vertical-preferring types based

on their physiology, and the vertical-preferring type tended to

have ventrally directed dendrites, while horizontally preferring

cells had a less consistent asymmetry (Nath and Schwartz,

2017). The Eyewire data did not have a corresponding type, con-

sisting only of cells with strong ventrally directed dendrites,

although they note that type ‘‘2aw,’’ with its similar range in den-

dritic asymmetry, has a much higher coverage factor than the

other types and likely corresponds to at least two RGC types

that were not separable based on morphology alone (Bae

et al., 2018). Given these facts and the corresponding stratifica-

tion patterns between these types, we are confident in the cate-

gorization of both OFFhOS and OFFvOS RGCs as Eyewire type

2aw. ON OS RGCs were also classified into horizontal- and ver-

tical-preferring types when they were reported in mouse (Nath

and Schwartz, 2016), but here we further subdivide each group

into separate ‘‘Small RF’’ and ‘‘Large RF’’ types based on the

spot size to which they respond optimally and their degree of

surround suppression. All four ON OS RGC types are among

the largest in the retina in terms of dendritic span, so their
morphology is captured incompletely in the Eyewire dataset.

Nonetheless, we have been able to assign each of these

functional OS RGC types to its most likely matching morpholog-

ical type.

We identified three RGC types as SbC, and a fourth, the ON

delayed RGC, has been classified as an SbC RGC under some

conditions (Jacoby and Schwartz, 2018; Tien et al., 2015). The

RGC type that we originally identified as the sustained SbC (Ja-

coby et al., 2015) has now been split into two types (EW27 and

EW28) based on both physiological and morphological criteria.

The bursty SbC RGC is distinguished from the sustained SbC

types by its much higher baseline firing rate, more transient sup-

pression, and monostratified morphology (Wienbar and

Schwartz, 2022). Overall, our data underscore the fact that, like

the other three polarities (ON, OFF, and ON-OFF), SbC is a

response class composed of multiple RGC types (Jacoby and

Schwartz, 2018).

Relationships between morphology, function, and gene
expression
Having matched functional, morphological, and transcriptomic

information for most RGC types, we were able to assess the re-

lationships among these properties. Disappointingly, proximity

of types as assessed by any single criterion failed to strongly

predict proximity by either of the other two criteria (Figures 6D-

6F. For transcriptomic relationships, one possibility is that genes

expressed during development, when morphology and
Cell Reports 40, 111040, July 12, 2022 13
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connectivity are being established, will need to be taken into ac-

count. On the other hand, the comparison between morphology

and function was valuable in highlighting three unexpected

trends. First, there are many exceptions to the rule that RGCs

with dendrites in the outer half of the IPL have OFF responses.

The M1 ipRGC was a well-known exception because it receives

ectopic synapses from ON bipolar cells in the outer IPL (Dumi-

trescu et al., 2009), but it is far from the only exception to this

rule. All four ON OS RGC types, the ON delayed, the M6, and

both sSbC types have OFF dendrites but lack OFF spike re-

sponses. In addition, the OFF OS RGCs and the F-mini-ON

RGC receive OFF input via gap junctions but lack OFF bipolar

cell input under any stimulus condition we have tested (Cooler

and Schwartz, 2020; Nath and Schwartz, 2017). An important

caveat is that stimuli beyond our test set could reveal OFF re-

sponses, perhaps in bright conditions (Pearson and Kerschen-

steiner, 2015; Tikidji-Hamburyan et al., 2015).

Second, the dendritic area of an RGC has often been associ-

ated with the size of its RF center. While this association has a

strong basis in the anatomy of the vertical excitatory pathways

of the retina, there are a number of exceptions in our data set.

For example, Small RF and Large RF ON OS RGC types do

not differ appreciably in dendritic area, and M6 RGCs have

smaller RFs than ON delayed RGCs despite substantially larger

dendritic area. Differential influences of inhibition and disinhibi-

tion likely explain some of these effects (Mani and Schwartz,

2017; Wienbar and Schwartz, 2018).

Finally, RGCs with dendrites near the inner and outer margins

of the IPL are typically assumed to have more sustained light re-

sponses while those stratifying near the middle of the IPL are

assumed to be more transient (Awatramani and Slaughter,

2000; Roska and Werblin, 2001). This association has gained

support from large-scale measurements of the kinetics of gluta-

mate release from bipolar cells throughout the IPL (Franke et al.,

2017; Marvin et al., 2013). While our data generally fit this trend,

there were two notable exceptions. The M6 RGC is transient

despite stratification at both margins of the IPL, and the LED

RGC is sustained despite stratification near the middle of the

IPL (Jacoby and Schwartz, 2017).

The literature linking gene expression, in particular RGC types

to their morphology and function, has been fragmentary because

the lack of knownmatches has prevented a wide view.We found

that expression of the gene Tusc5 is strongly associated with a

particular physiological profile (transient light responses and

strong surround suppression) and a morphological profile (strat-

ification between the ChAT bands) (Figure 5B). As more informa-

tion about each of the RGC types becomes available, including

their projection patterns in the brain, we expect more insights

into the molecular determinants of RGC wiring patterns both

within the retina and to the brain. Future studies may also link

biophysical properties of RGCs to the expression of ion

channels.

Web-based resource
Standardization in the definitions of RGC types among different

research groups is essential to support studies on retinal compu-

tation, circuit connectivity, and disease pathology. In addition,

there is rapidly expanding interest in the projection patterns of
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different RGC types throughout the brain (Dhande et al., 2015;

Johnson et al., 2021; Martersteck et al., 2017), which similarly re-

lies on standardized type definitions. For these reasons, we

created an open online resource at rgctypes.org where users

can search and download full datasets, use our classification al-

gorithm, and contribute their own data to this effort. By unifying

the separate functional, morphological, and molecular RGC

classification schemas, this resource will allow researchers to

connect data across experimental modalities.

Limitations of the study
Several limitations of our dataset suggest directions for future

work. First, our stimuli were limited to a single wavelength distri-

bution, a small range of scotopic to mesopic luminance, and a

simple set of artificial patterns (spots, gratings, and moving

bars). These stimulus choices meant that we could not explore

how RGC responses differed over the parameters of luminance

or wavelength. More generally, RGCs evolved not for selectivity

to the artificial parameterized stimuli we presented but to detect

behaviorally relevant features of natural scenes. Second, while

centering the stimulus for each RGC was important for

measuring the spatial features of its response, this step compli-

cates the recovery of locally complete RGC mosaics. Therefore,

a future step in RGC typology alignment will be needed to match

our types with those in large-scale recordings using either cal-

cium imaging or multi-electrode arrays. We hope to collaborate

with other labs performing large-scale RGC recordings with

some version of a sparse noise stimulus to validate the robust-

ness of our functional classification across labs and prepara-

tions. Finally, our morphological alignment to the Eyewire

dataset was not validated by a classification algorithm. The

limited number of cells in both datasets and their methodological

differences made such a morphology classifier impractical, but

with additional data an RGC morphology classifier is a goal

(Laturnus and Berens, 2021). Since our functional classification

algorithm produces a posterior probability for each class, func-

tional and morphological information could be incorporated

seamlessly into a single prediction. Similarly, our improving

understanding of the gene expression profiles of each RGC

type could enable more accurate composite predictions from

the expression of a few key genes plus functional and/or

morphological data.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Streptavidin-488 Thermo Scientific S32354

Streptavidin-568 Thermo Scientific S11226

Goat anti- ChAT Millipore AB144P, RRID AB_2079751

Streptavidin-647 Jackson Immuno 016-600-084

Donkey anti- Goat 647 Fisher A11055

Chemicals, peptides, and recombinant proteins

Neurobiotin Vector Laboratories SP-1150

TCL Buffer Qiagen 1031576

Recombinant Ribonuclease Inhibitor Takara Bio 2313A

Advantage � UltraPure PCR

Deoxynucleotide Mix (10mM)

Clontech/Takara 639125

KAPA HiFi HotStart PCR ReadyMix KAPA Biosystems KK2602

Maxima H-minus RT Thermo Fischer EP0752

SPRI SELECT Reagent Beckman-Coulter B23318

Trehalouse Life Sciences Technologies TS1M-100

Critical commercial assays

Nextera XT DNA Library

Preparation Kit (96 samples)

Illumina Inc FC-131-1096

Deposited data

Traced RGCs This paper Mendeley Data. https://doi.org/

10.17632/8f435gyybb.1

Experimental models: Organisms/strains

C57/Bl6 mice Jackson Labs 000664, RRID IMSR_JAX:000664

PV-Cre Jackson Labs 008069

Ai14 Jackson Labs #007908

Opn4-GFP Tiffany Schmidt N/A

TYW3-GFP Joshua Sanes N/A

JAMB-eYFP Joshua Sanes N/A

Oligonucleotides

Reverse Transcription DNA oligonucleotide

primer (RNase-free, 10 mM)

IDT; Custom made: 50-AAGCAGTGG

TATCAACGCAGAGTACT(30)VN-30
N/A

SMARTER TSO (with LNA, 10 mM)) Exiqon; Custom made: AAGCAGTGG

TATCAACGCAGAGTACATrGrG+G

N/A

PCR oligonucleotide primer (10 mM) IDT; Custom made: 50-AAGC

AGTGGTATCAACGCAGAGT-30
N/A

Software and algorithms

MATLAB Mathworks R2021A

ImageJ/FIJI NIH Version: 1.53

Symphony Data Acquisition System Mark Cafaro Version: 2

Symphony Analysis and other

custom analysis scripts

MATLAB https://doi.org/10.5281/zenodo.6423526

DataJoint physiology analysis code MATLAB https://doi.org/10.5281/zenodo.6544673

RGC Classifier This paper https://doi.org/10.5281/zenodo.6578626

RGC Morphology Analyzer This paper https://doi.org/10.5281/zenodo.6578530

(Continued on next page)

e1 Cell Reports 40, 111040, July 12, 2022

https://doi.org/10.17632/8f435gyybb.1
https://doi.org/10.17632/8f435gyybb.1
https://doi.org/10.5281/zenodo.6423526
https://doi.org/10.5281/zenodo.6544673
https://doi.org/10.5281/zenodo.6578626
https://doi.org/10.5281/zenodo.6578530


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

UMAP McInnes et al., 2018 (algorithm);

https://www.mathworks.com/matlabcentral/

fileexchange/71902

(MATLAB implementation)

Version: 3.01

Igor Pro Wavemetrics Version: 8.04

R 3.6.2 http://www.r-project.org/ The R foundation

RStudio -2021.09.0 http://www.rstudio.com RStudio

Bowtie v2.4.4 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

Bowtie2

RSEM v1.3.2 https://github.com/deweylab/RSEM RSEM
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gregory

Schwartz (greg.schwartz@northwestern.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Functional and transcriptomic data from this study are available at rgctypes.org and will be continuously updated. Morpholog-

ical data and any additional raw data will be shared by the lead contact upon request.

d Tracings of all RGCs included in themorphology study are available at Mendeley Data (https://doi.org/10.17632/8f435gyybb.1)

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Wild-type mice (C57/Bl6 - JAX 000664) of either sex were housed and cared for at the Northwestern University Northwestern Uni-

versity Center for Comparative Medicine. They were housed with siblings in groups up to 4, fed normal mouse chow and maintained

on a 12:12 h light/dark cycle. Mice were dark-adapted overnight and sacrificed at 4 to 12 weeks of age according to standards

provided by Northwestern University Center for Comparative Medicine and approved by the Institutional Animal Care and Use Com-

mittee (IACUC). 4 transgenic lines were used to target subsets of RGCs. All other mice were WT.

PV-Cre (JAX #008069) x Ai14 (JAX #007908): 4 animals.

Opn4-GFP (Generous gift from lab of Tiffany Schmidt, Northwestern University): 2 animals.

TYW3-GFP (Lab of author J. Sanes): 9 animals.

JAMB-eYFP (Lab of author J. Sanes): 3 animals.

METHOD DETAILS

Ex vivo retina preparation
Retinal tissue was isolated under infrared illumination (900 nm) with the aid of night-vision goggles and IR dissection scope attach-

ments (BE Meyers). Retinal orientation was identified using scleral landmarks (Wei et al., 2010), and preserved using relieving cuts in

cardinal directions, with the largest cut at the ventral retina. Retinas were mounted on 12mm poly-D-lysine coated glass affixed to a

recording dish with grease, with the ganglion cell layer up. Oxygenation was maintained by superfusing the dish with carbogenated

Amesmedium (US Biological, A1372-25) warmed to 32�C. Our dataset included 1859 recorded RGCs from 551 eyes of 544 animals.

Visual stimuli
RGC types were identified via cell-attached capacitive spike train responses to light stimuli as previously described (Jacoby and

Schwartz, 2017; Jacoby et al., 2015; Mani and Schwartz, 2017; Nath and Schwartz, 2016, 2017). Briefly, stimuli were presented using

acustomdesigned light-projector (DLPLightCrafter; Texas Instruments) at a frame rateof 60Hz. Spatial stimuli patternsweregenerated
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on a 9123 1140-pixel digital projector using blue (450nm) LEDs focused on the photoreceptor layer. Neutral density filters (Thorlabs)

were used to attenuate the light intensity of stimuli to 200 rhodopsin isomerizations per rod per second (R*/rod/s) from darkness.

The receptive field (RF) centers of individual RGCs were determined by monitoring their relative light responses to horizontal and

vertical bars (200 3 40 mm, or 100 3 40 mm in the case of cells with high surround suppression) flashed at 30 mm intervals at 11 lo-

cations along each axis. Subsequent stimuli were presented at the RF center. For generic light steps, a spot of 200 mm diameter was

presented for 1 s, with cell-attached responses recorded for at least 0.5 s pre-stimulus and 1s post-stimulus. For spots of multiple

sizes, spots with diameters from 30 to 1200 mm (on a logarithmic scale) were presented in pseudorandom order, with similarly timed

epochs. Direction preference of direction-selective (DS) RGCs was determined bymoving bar stimuli, consisting of a rectangular bar

(6003 200 mm) passing through the receptive field center at 1000 mm/s (ON-OFF DS RGCs) or 500 mm/s (ON DS RGCs). Flashed bar

stimuli for testing orientation selectivity were 8003 50 mmand presented at 12 different orientations (Nath and Schwartz, 2016). Drift-

ing gratings and contrast series were presented from a background luminance of 1000 R*/rod/s following protocols from previous

studies (Jacoby et al., 2015; Nath and Schwartz, 2017).

Imaging
A subset of recorded RGCs were injected with Neurobiotin (Vector Laboratories, SP-1150, �3% w/v and �280 mOsm in potassium

aspartate internal solution) using patch pipettes. Retinas were then fixed in 4% paraformaldehyde for 15 min at 25�C, washed three

times with PBS, and incubated for 1 h in blocking solution (13 PBSwith 3% normal donkey serum, 0.05% sodium azide, 0.5% Triton

X-100) including streptavidin conjugated to a fluorophore (Alexa Fluor 488 or Alexa Fluor 568). Next, retinas were incubated again in

blocking solution with primary antibody against choline acetyltransferase (ChAT; Millipore, AB144P, goat anti-ChAT, 1:1000) for 5

nights at 4�C. Retinas were then rinsed in PBS three times at no less than 1 h per wash before incubation overnight at 4�Cwith strep-

tavidin (Jackson, 016-600-084) and secondary antibody (Donkey anti-Goat 647, Fisher, A11055). Retinas were then rinsed again in

PBS three times at no less than 1 h per wash before mounting on slides with Fluoromount.

RGCs filled with AlexaFluor were imaged immediately using two-photon microscopy (920 nm, MaiTai HP; SpectraPhysics) under a

603water-immersion objective (Olympus LUMPLan FLN 603/1.00 numerical aperture). A 520–540 nm band-pass filter was used to

collect emission. After immunohistochemistry, confocal imaging was performed at the Center for Advanced Microscopy at North-

western University Feinberg School of Medicine generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie

Comprehensive Cancer Center. Dendrites were traced in Fiji using the SNT plugin (Arshadi et al., 2021).

Single-cell transcriptomics
Library generation

Following physiological recording, a subset of RGCs was isolated for single-cell transcriptome sequencing. First, the area surround-

ing cells of interest was cleaned of nearby cells and visible debris by aspiration through a large (3-4um inner diameter) patch pipette.

Cells were then aspirated using a freshly flame-pulled patch pipette (2.5 inner diameter) and placed into a 5 mL of lysis Buffer TCL

(Qiagen, 1031576) + 1% 2-mercaptoethanol (Millipore-Sigma, 63689) before being flash-frozen on dry ice.

We generated RNA-Seq libraries using amodified Smart-seq2method (Picelli et al., 2014) with the followingminor changes: Before

reverse transcription, RNAwas purified using 2.23 SPRI-beads (Beckman Coulter, A3987) followed by 3wash steps with 80%EtOH,

elution in 4 mL of RT primer mix and denatured at 72�C for 3min. Six ml of the first-strand reactionmix, containing 0.1 mL SuperScript II

reverse transcriptase (200 U/mL, Invitrogen), 0.25 mL RNAse inhibitor (40 U/mL, Clontech), 2 mL Superscript II First-Strand Buffer (53,

Invitrogen), 0.1 mL MgCl2 (100 mM, Sigma), 0.1 mL TSO (100 mM) and 3.45 mL Trehalose (1M), were added to each sample. Reverse

transcription was carried out at 50�C for 90 min followed by inactivation at 85�C for 5 min. After PCR preamplification, product was

purified using a 0.83 of AMPure XP beads (Beckman Coulter), with the final elution in 12 mL of EB solution (Qiagen). For tagmentation

the Nextera DNASample Preparation kit (FC-131-1096, Illumina) was used and final PCRwas performed as follows: 72�C3min, 95�C
30 s, then 12 cycles of (95�C 10 s, 55�C 30 s, 72�C 1 min), 72�C 5min. Purification was done with a 0.93 of AMPure XP beads. Li-

braries were diluted to a final concentration of 2 nM, pooled and sequenced on Next-Seq(Mid), 75bp paired end.

Alignment and quantification of scRNA-cell transcriptomic libraries

Gene expression levels were quantified using RNA-seq by Expectation Maximization (RSEM) (Li and Dewey, 2011). Under the hood,

Bowtie 2 (Langmead and Salzberg, 2012) was used to map paired-end reads to a mouse transcriptome index (mm10/

GRCm38 UCSC build). RSeQC (Wang et al., 2012) was used to quantify quality metrics for the alignment results. We only considered

cells where the read alignment rate to the genome and transcriptome exceeded 85% and 35% respectively, and the total number of

transcriptome-mapped reads was less than 350,000. RSEM yielded an expression matrix (genes x samples) of transcript per million

counts (TPM), which were log-transformed after the addition of 1 to avoid zeros. Overall 103 RGCs, each of which carried a functional

type label, were selected for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Functional response metrics
Wemeasured 6 standard responsemetrics from the flashed spots data. Distributions for eachmetric for each RGC type are shown in

Figure S4.
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Baseline firing rate: Mean firing rate in darkness before spot presentation across all trials.

Peak firing rate: Highest firing rate (baseline subtracted) achieved in a 10 ms bin at light onset or offset across all spot sizes.

Peak response latency: Time from light onset or offset until the peak firing rate.

Response duration: Time from peak firing rate until firing rate drops below baseline +10 percent.

Suppression index: First we determined the dominant polarity for the cell by whether the maximum ON or OFF response (in total

spike count from baseline) was larger across spot sizes. For the dominant polarity, the suppression index was the ratio of the differ-

ence between this maximum response and the response to the largest (1200 mm) spot divided by the sum of these two quantities.

ON:OFF index: Maximum ON response across spot sizes (spike count from baseline) minus the maximum OFF response divided

by the sum of these two quantities.

Automated classification
A classifier was trained to recognize RGC types based on cell-attached recordings of responses to spots of multiple sizes. RGC type

labels were assigned manually by two of the authors (JG and GWS), and cells were further labeled as externally validated or unva-

lidated by GWS based on the presence of identifying data not available to the classifier, including morphological, transcriptomic,

whole-cell, and physiological (response to moving bars or drifting gratings) data. Types with 5 or fewer examples were excluded

from training, and OS and DS cells were condensed across orientation/direction based on the similarity of their light responses to

spots of multiple sizes.

Cells were randomly assigned to a testing set (�25% of cells) and a training set, which was further subdivided into a training set for

a base classifier (�50% of cells) and a calibration set (�25% of cells). The scheme favored assignment of validated cells to the cali-

bration set and unvalidated cells to the training set for the base classifier. The classifier implements a semi-supervised learning

model: a base classifier learns to recognize features of the probability distribution of RGC light responses that are useful for predicting

themanual labels, subject to labeling error; this knowledge is ‘‘transferred’’ by the calibrator to reweight the basemodel’s predictions

in order to better predict the labels which are influenced by external validation. Thus weminimize error propagation while maintaining

a large enough training set to form robust predictions about RGC type.

Themulti-class classification problemwas broken down into a series of binary ones using the error-correcting output code (ECOC)

scheme, such that a series of classifiers each learns to discern different combinations of RGC types. Each binary learner in the ECOC

schemewas trained using Ada-boosted decision trees (Hastie et al., 2009) with initial weights set to enforce a uniform prior probability

of each RGC type.

Individual trees were trained by performing elastic net logistic regression on a random subset of firing rates from peristimulus time

histogram (PSTH) vs. spot size for feature reduction and choosing the threshold that minimized class uncertainty (Friedman et al.,

2010; Schneider et al., 2015). Since not all PSTHs were recorded over the same time and spot size ranges, we imputed missing

data using a nearest neighbor approach. Poorly sampled points were penalized in both random selection and regression: for time

points the penalty was inversely proportional to their frequency of occurrence across cells (since all PSTHs were binned with the

same Dt); for spot sizes we aimed to account for the nonlinearity of responses in the penalty with the following formula:

penalty� 1ðsÞ fmax
�
logðMSEð$ÞÞ+

� � logðMSEðsÞÞ+ ;
where MSE is the mean across cells of the squared error between the chosen spot size, s, and the nearest recorded spot size, and

ð ,Þ + denotes positive rectification.

To implement the calibrator, the calibration fold was used to train an isotonic regressionmodel that transformed each binary learner

score into a probability, again enforcing a uniform prior using sample weighting (Zadrozny and Elkan, 2002). The probabilities from

each binary learner were then coupled to obtain a probability for each class (Zadrozny, 2002).

We used three-fold cross validation to train a Bayesian optimization model for hyperparameter tuning. The table below lists the

hyperparameters we optimized and their final values. The classifier is available for use at rgctypes.org, and the link to the source

code is in the Key Resources Table.
Table. Hyperparameters for the automated RGC classifier

Parameter Algorithm level Optimized value Optimization range

Number of features elastic net 54 5 to 100

Number of folds elastic net 6 2 to 10

Alpha elastic net .326 0.0 to 1.0

Number of lambda values elastic net 6 5 to 50

Number of repetitions decision node 5 5 to 20

Minimum size decision node 13 5 to 100

Maximum depth decision tree 6 2 to 8

(Continued on next page)
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Parameter Algorithm level Optimized value Optimization range

Minimum tree count adaboost forest 76 20 to 100

Maximum tree count adaboost forest 95 25 to 100

Stopping criterion adaboost forest 1.44% improvement

over last 44 trees

1% to 50% improvement

over last 10 to 50 trees

Ensemble size ECOC 96 32 to 100

Probability of

ensemble membership

ECOC 22.2% in positive class, 38.2%

in negative class, 60.4% null

10% to 90% in

positive/negative class
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Morphology analysis
Dendrite skeleton images were flattened using a customMATLAB tool based on the method in (S€umb€ul et al., 2014) and available at

the link provided in the Key resources table. In cases where we had ChAT staining, the ChAT bands were used as the reference sur-

faces. In cases where ChAT staining was not available, we used a smoothed version of each (hand-selected) stratum as reference

surfaces and used soma position to register to IPL depth. In addition to the stratification profile, we computed 10 additional metrics

from each arbor skeleton. All of these metrics were combined for the unsupervised clustering analyzed in Figure S5.

Area. Area of the polygon connecting the tips of the dendrites in each stratum.

Convexity Index. Convex hull area around each stratum divided by the polygon area.

Total length. Linear length of dendritic tree.

Arbor density. Linear length divided by area for each stratum.

Arbor complexity. Number of branches divided by total length.

Soma size. Diameter of soma at its largest axial cross section.

Branch length. Distribution of lengths of all branches of the dendritic tree.

Branch angle. Distribution of angles at branch points in the arbor.

Tortuosity. Distribution of path length divided by Euclidean distance between endpoints for each branch.

Depth range. Distribution of range in depth in the IPL spanned by each branch.

Matching gene-expression clusters to cell types
To map each of the 103 RGC transcriptomes to a molecular cluster in Tran et al. (2019) we used the XGboost algorithm (Chen and

Guestrin, 2016), as implemented in the R package xgboost. Briefly, we trained and validated an xgboost multi-class classifier on the

atlas of 35,699 RGCs subdivided into 45 molecularly distinct groups (C1-C45). Around 50% of the data was used for training and the

remaining 50%was held out and used for validation. We optimized hyperparameters (e.g. tree depth, number of features, class-spe-

cific weights) to achieve a validation set accuracy of >90% across each of the 45 transcriptomic classes. This trained classifier was

then used to assign a cluster label for each of the 105 transcriptomes profiled in this study.We assigned a transcriptomic label to each

RGC if a minimum of 15% of trees in the forest voted on the majority decision. This choice of voting margin was >63 higher than the

random threshold of 2.3%, based on the fact that there are 45 classes. The correspondences between functional and transcriptomic

labels were visualized as confusion matrices.

UMAP and cross-modality neighborhood comparisons
The functional input data to the UMAP algorithm was a linearized version of the full matrix of the PSTH for each cell across spot sizes

(as in Figure 1). We used a MATLAB implementation of UMAP (https://www.mathworks.com/matlabcentral/fileexchange/71902) su-

pervised by the RGC type labels for the dataset of 1859 cells. The input to the UMAP algorithm for morphology was the unnormalized

stratification profile for each RGC from the Eyewire museum (381 cells) supervised by the labels in the museum. Although no attempt

wasmade to capture details of the en facemorphological characteristics of each cell, the unnormalized stratification data allowed the

algorithm to use information about total dendritic length. The input to the UMAP algorithm for transcriptomic space was a vector of

gene expression values for RGC-type-selective genes from the published dataset (�35,699 cells) as described in (Tran et al., 2019).

We measured similarities between the three UMAP spaces (function, morphology, and genetics) by comparing nearest neighbors

between spaces. For each RGC type in which we established a match between the two spaces being compared, we measured the

fractional overlap between the nearest neighbors in the first space and those in the second space (matching types/neighborhood

size). The analysis was repeated for neighborhood sizes from 2–12. To assess the statistics of the measured overlap values, we

created a bootstrap distribution by randomly shuffling the cluster identities in one of the spaces. Data in Figures 6D–6F are z scores

with respect to this bootstrap distribution which was Gaussian.
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